在二十年前刚刚加入谷歌时,我们关注的问题只有一个——如何面向这么多不同种类的联网计算机提供一整套质量出色且涵盖范围全面的网络信息搜索服务。到如今,尽管我们面临着各种各样的技术挑战,但谷歌已经基本达成了组织全...
联邦学习(Federated Learning)允许用户在将数据保留在本地端不共享的前提下形成一个联合体训练得到全局模型,从而有效解决数据隐私和安全保护问题。同时,还可以有效应用联合体各方用户所掌握的标注数据,解决标注数据缺乏的...
之前,他是学界精英,佛罗里达大学终身教授;现在,他是同盾科技人工智能研究院的院长。平时与人交谈时,他语言温和,但一旦涉及专业问题时,立即进入学者气场。...
随着互联网覆盖范围的扩大,越来越多的用户习惯于在网上消费各种形式的内容,推荐系统应运而生。推荐系统在我们的日常生活中无处不在,它们非常有用,既可以节省时间,又可以帮助我们发现与我们的兴趣相关的东西。目前,推荐系统...
海量训练数据是现代机器学习算法、人工智能技术在各个领域中应用获得成功的重要条件。例如,计算机视觉和电子商务推荐系统中的 AI 算法都依赖于大规模的标记良好的数据集才能获得较好的处理效果,如 ImageNet 等。然而在...
作为分布式的机器学习范式,联邦学习能够有效解决数据孤岛问题,让参与方在不共享数据的基础上联合建模,挖掘数据价值。
本文介绍一篇来自 ACMMM20 Oral 的论文,这篇论文主要通过构建一个 benchmark,并基于 benchmark 结果的深入分析,提出两个优化方法,提升现实场景下联邦学习在行人重识别上碰到的数据异构性问题。...
近日,创新工场董事长兼CEO李开复博士与阿莱克斯·彭特兰教授(Alex Pentland)展开了一场”AI如何重塑人类社会”的精彩对话。
导语:近10年,机器学习在人工智能领域迅猛发展,其中一个关键的推动燃料就是人类社会积累的大量数据。然而,尽管数据规模在总体上快速增长,绝大部分数据却分散在各个公司或部门内,导致数据被严重隔离和碎片化;也正因为此,各个组...
经典的机器学习方法基于样本数据(库)训练得到适用于不同任务和场景的机器学习模型。这些样本数据(库)一般通过从不同用户、终端、系统中收集并集中存储而得到。在实际应用场景中,这种收集样本数据的方式面临很多问题。一方...