在某些场景下,线性回归无法给出一个效果好的预测模型,那么就需要使用线性回归的升级版,去面对更复杂的应用场景,本文所记录的岭回归便是线性回归的一个升级版。...
,其中y 代表的是样本视为正样本的可能性,则 1-y 为视为负样本的可能性。
第一个要讲的机器学习算法便是线性回归,从此模型入手便于我们很快的熟悉机器学习的流程,便于以后对其他算法甚至是深度学习模型的掌握。
在之前已介绍了线性回归的模型算法,那么有了模型之后,如何去评估这个模型的效果究竟是好还是差呢?而如果得到一个效果较好的模型又如何去将其封装,方便他人使用呢?这需要具备回归模型的评估与封装的知识。...
第一个要讲的机器学习算法便是线性回归,从此模型入手便于我们很快的熟悉机器学习的流程,便于以后对其他算法甚至是深度学习模型的掌握。本文尝试使用两个版本的python代码,一个是不调用sklearn库版本,另一个是调用sklearn...
机器学习模型要想能够很好的应用,必须要能够学会调整超参数,在训练中找到最适合的超参数,本文以前文曾讲过的线性回归为例,来进行学习超参数的调整与作图的实现,即可视化。...
当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型...
笔者认为一般统计模型中的横截面回归模型中大致可以分为两个方向:一个是交互效应方向(调节、中介效应)、一个是随机性方向(固定效应、随机效应)。...
y^ 当两个变量间存在线性相关关系时,常常希望建立二者间的定量关系表达式,这便是两个变量间的一元线性回归方程。假定x是自变量,y是随机变量,y对x的一元线性回归方程的表达式为:y ^ =a+bx 。因此字母头上加个“^”表示回归...
在面对一些简单的线性问题时。线性回归能够用一个直线较为精确地描述数据之间的关系。但对于复杂的非线性数据问题时。线性回归的效果就大大不如意了。对特征数据进行多项式变化,再使用线性回归的做法就能提高模型的拟...