本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要介绍在逻辑回归算法中使用多项式特征以解决非线性数据的分类问题,并通过具体的编程实现。...
2.5.3 Gradient Boosting Decision Tree
逻辑回归恐怕是互联网领域用的最多的模型之一了,很多公司做算法的同学都会拿它做为算法系统进入模型阶段的baseline。
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。...
本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要推导逻辑回归损失函数的梯度,通过与线性回归模型的梯度进行比较找出逻辑回归损失函数梯度的向量化表示。...
本系列是《玩转机器学习教程》一个整理的视频笔记。在上一小节介绍了逻辑回归的大致框架,有了大致框架就需要建模来求解参数θ值。本小节重点介绍逻辑回归的损失函数。...
把现在的工作做好,才能幻想将来的事情,专注于眼前的事情,对于尚未发生的事情而陷入无休止的忧虑之中,对事情毫无帮助,反而为自己凭添了烦恼。...
本系列是《玩转机器学习教程》一个整理的视频笔记。本小节介绍对于分类问题非常重要的决策边界,先对逻辑回归求出决策边界的函数表达式并绘制,但是对于像kNN这种不能求出决策边界表达式的可以通过预测样本特征平面中区...
"Do what you dream of doing even while you're afraid.。—— Arianna Huffington"
思考一下,这样的话,会发生什么?真实结果与我们预测的结果之间是不是存在一定的误差呢?类似下图所示: