最新 最热

运用伪逆矩阵求最小二乘解

已经有工具可以解很多最小二乘的模型参数了,但是几个专用的最小二乘方法最多支持一元函数的求解,难以计算多元函数最小二乘解,此时就可以用伪逆矩阵求解了。...

2023-04-09
0

Kaggle知识点:模型加权集成7种方法

在竞赛中如果对多个预测结果进行集成,最方便的做法是直接对预测结果进行加权求和。此时不同任务,加权方法不同:

2022-12-11
0

开源图书《Python完全自学教程》12.6机器学习案例12.6.1预测船员数量

数据集 cruise.csv 包含了船的吨位、大小、乘客密度、船员数量等特征,业务需要建立一个船员数量与其他相关特征的回归模型,从而能估计船员数量。

2022-12-09
0

【视频】什么是非线性模型与R语言多项式回归、局部平滑样条、 广义相加GAM分析工资数据|数据分享|附代码数据

在这文中,我将介绍非线性回归的基础知识。非线性回归是一种对因变量和一组自变量之间的非线性关系进行建模的方法。最后我们用R语言非线性模型预测个人工资数据(查看文末了解数据获取方式)是否每年收入超过25万...

2022-12-08
0

机器学习的通俗讲解

机器学习人人都在谈论,但除了老师们知根知底外,只有很少的人能说清楚怎么回事。如果阅读网上关于机器学习的文章,你很可能会遇到两种情况:充斥各种定理的厚重学术三部曲(我搞定半个定理都够呛),或是关于人工智能、数据科学...

2022-12-07
0

python统计应用

1.简答题 请打开:资料–课 程所用数据一- Incomregression.csv 利用该csv文件中的数据,选择一种python编 译器编写python程序,完成以下内容: 读取数据,并选择变量中类型 为"float64" 的变量,对这些变量进行描 述性分析( 1...

2022-12-05
0

SciPyCon 2018 sklearn 教程(下)

在前面的章节和笔记本中,我们将数据集分为两部分:训练集和测试集。 我们使用训练集来拟合我们的模型,并且我们使用测试集来评估其泛化能力 - 它对新的,没见过的数据的表现情况。...

2022-12-02
0

计算与推断思维 十三、预测

数据科学的一个重要方面,是发现数据可以告诉我们什么未来的事情。气候和污染的数据说了几十年内温度的什么事情?根据一个人的互联网个人信息,哪些网站可能会让他感兴趣?病人的病史如何用来判断他或她对治疗的反应?...

2022-12-01
0

写给人类的机器学习 四、神经网络和深度学习

使用深度学习,我们仍然是习得一个函数f,将输入X映射为输出Y,并使测试数据上的损失最小,就像我们之前那样。回忆一下,在 2.1 节监督学习中,我们的初始“问题陈述”:...

2022-12-01
0

Python 数据科学手册 5.7 支持向量机

支持向量机(SVM)是一种特别强大且灵活的监督算法,用于分类和回归。 在本节中,我们将探索支持向量机背后的直觉,及其在分类问题中的应用。

2022-12-01
0