这本书的第三版继续演示如何应用概率论,以获得洞察到真实的日常统计问题和情况。这种方法最终导致了对统计程序和策略的直观理解,最常用的是实践工程师和科学家。这本书是为统计学或概率和统计的入门课程而写的,为工程、...
⽼板给了你⼀个关于癌症检测的数据集,你构建了⼆分类器然后计算了准确率为 98%, 你是否对这个模型满意?为什么?如果还不算理想,接下来该怎么做?...
在这篇文章中,我将解释有监督的机器学习技术如何相互关联,将简单模型嵌套到更复杂的模型中,这些模型本身嵌入到更复杂的算法中。接下来的内容将不仅仅是一份模型备用表,也不仅仅是一份监督方法的年表,它将用文字、方程和图...
这两个模型都属于集成学习中的树模型,每个机器学习模型都有它特定的应用场景,不同的数据集适合用到的模型是不一样的。
https://bioconductor.org/packages/devel/bioc/vignettes/phyloseq/inst/doc/phyloseq-FAQ.html
使用工具:python、pandas、numpy、matplotlib、seaborn、sklearn库
回归是描述自变量和因变量之间相互依赖关系的统计分析方法。线性回归作为一种常见的回归方法,常用作线性模型(或线性关系)的拟合。
下面博客是基于MXNET框架下的线性回归从零实现,以一个简单的房屋价格预测作为例子来解释线性回归的基本要素。这个应用的目标是预测一栋房子的售出价格(元)。...
逻辑回归是解决分类问题的,那回归问题怎么解决分类问题呢?将样本的特征和样本发生的概率联系起来,概率是一个数。
在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个...