今天云朵君将和大家一起学习回归算法的基础知识。并取一个样本数据集,进行探索性数据分析(EDA)并使用 statsmodels.api、statsmodels.formula.api 和 scikit-learn 实现 简单线性回归(SLR)。...
在许多机器学习相关的书里,很难找到关于特征选择的内容,因为特征选择要解决的问题往往被视为机器学习的一个子模块,一般不会单独拿出来讨论。...
线性模型的建模为了提高模型的泛化能力,一般会进行正则化处理,也就是在损失函数的构造上加上正则化项,如L1正则化项或者L2正则化项,L1正则化也就是常说的Lasso回归,将损失函数加上了L1范数,L2正则化就是Ridge回归,损失函数加...
https://github.com/MLEveryday/100-Days-Of-ML-Code
使用工具:python、pandas、numpy、matplotlib、seaborn、sklearn库
matplotlib是python最常见的绘图包,强大之处不言而喻。然而在数据科学领域,可视化库-Seaborn也是重量级的存在。
在讨论逻辑**回归问题 (Logistic Regression) 之前,我们先讨论一些实际生活中的情况:判断一封电子邮件是否是垃圾邮件?判断一次交易是否是欺诈交易?判断一份文件是否是有效文件?这类问题,我们称之为分类问题 (Classication ...
如果直接使用线性回归的MSE会让逻辑回归的代价函数变成非凸函数,这样就会导致有非常多的局部最优值,导致梯度下降法失效。所以引入了交叉熵损失函数来替代线性回归的MSE(均方误差)...
MSE直接应用到LR中会导致损失函数变成非凸函数,所以我们加入log让损失函数变成了凸函数
机器学习算法尝试根据训练数据(training data)使得表示算法行为的数学目标最大化,并以此来进行预测或作出决定。