机器学习这个主题已经很普遍了,每个人都在谈论它,但很少有人能够透彻地了解它。当前网络上的一些机器学习文章晦涩难懂,理论性太强,或者通篇云里雾里地介绍人工智能、数据科学的魔力以及未来的工作等。...
聊起 AI,画面都充斥着机械语言:精密高级的芯片,光怪陆离的智能产业……你眼中的 AI 有什么样的能力?能给传统行业带来哪些变革与发展?基于此,云加社区联手知乎科技,从知乎AI 与传统行业相关话题中精选内容落地社区专题「 AI ...
近年来,深度学习在图像识别方面取得了显著的成功。然而,最先进的视觉模型仍然是用监督学习来训练的,这就需要大量的标记图像才能很好地工作。 通过只显示标记图像的模型,我们限制了我们自己使用更大数量的未标记图像来提...
有监督学习也称为有导师学习,其特点是需要依赖教师信号进行权值调整,如下图所示。学习时,需要提供训练集。训练集由输入(也称为特征)和输出(也称为目标)构成,也就是说数据被打了标签(Label),其目的就是训练模型以得到在某个评价...
由于我热衷于机器学习在时间序列中的应用,特别是在医学检测和分类中,在尝试的过程中,一直在寻找优质的Python库(而不是从头开始编写代码)去实现我对于数据处理的需求。以下是我在处理时间序列数据(time series data)。我希望...
文章系统性地回顾了自然语言处理领域中的文本增强技术在近几年的发展情况,重点列举和讨论了 18 年、19 年中人们常用的五类文本增强技术路径以及对应的代表性技术。接下来,文章以金融领域的自然语言处理任务入手,多维度...
图(Graph)是不规则数据/非欧几里得数据(例如 3D 点云、社交网络、引文网络、脑网络等)的一种自然而有效的表征。由于图的强大表现力,图数据的机器学习越来越受到重视,如近年来提出的图卷积神经网络(Graph Convolutional Neur...
本文介绍一篇由港中文发表于ICLR-2020的论文《Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification》[1],其旨在解决更实际的开放集无监督领域自适应问题,.....