深度学习在解决许多复杂的机器学习问题方面一直是一个有趣的课题,特别是最近在图数据方面。然而,大多数的解决方案要么是监督或半监督,高度依赖于数据中的标签,导致过拟合和整体鲁棒性较弱。自监督学习(Self-Supervised L...
fast.ai上面关于自监督学习的资料:Self-supervised learning and computer vision. GitHub上面每年使用自监督学习的论文列表:Awesome Self-Supervised Learning. 相关微信推送...
自监督方法将取代深度学习中占主导地位的直接监督范式的预言已经存在了相当一段时间。Alyosha Efros打了一个著名的赌,赌在2015年秋季之前,一种无监督的方法将会在检测Pascal VOC方面胜过有监督的R-CNN。但四年之后,他的...
模仿学习 优点: 1.简单、稳定的监督学习过程 缺点: 1.需要提供榜样行为数据 2.需要处理多解型行为(例如 绕过障碍物,可以从左边或者右边,但是专家数据不一定覆盖所有行为,可以用多元高斯分布去等方法去处理) 3.不能超越人类...
其中 sj 是一个状态,而对应的 aj 是人类专家基于状态 sj 做出的动作。(aj就是行为克隆遇到状态sj时,应该做出的动作) 可以把 sj 和 aj 分别视作监督学习中的输入和标签。...
编者按:目前,深度学习正广泛应用于医学图像配准领域。无监督机器学习方法能够广泛利用临床中产生的大量原始、无标注医学图像,然而现有算法对于变形大、变化复杂的图像配准的学习效果较差。微软亚洲研究院在 ICCV 2019 ...
虽然近年来无监督单目深度学习取得了很大的进展,但仍然存在一些基本问题。首先,目前的方法存在尺度模糊性问题,因为反推过程对于深度和平移来说相当于任意尺度因子。其次,光度误差对照明变化和移动物体敏感。此外,尽管在无...
With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations
在现实世界的城市环境中进行运动预测是自主机器人的一项重要任务,包括预测车辆和行人在内的交通主体的未来轨迹,这对于自动驾驶领域的安全、舒适和高效操作来说绝对至关重要。运动预测任务传统上是基于运动学约束和具有...
利用计算机的运算能力,从大量的数据中发现一个 “函数”或“模型” ,并通过它来模拟现实世界事物间的关系,从而实现预测、判断等目的。建模的过程就是机器“学习”过程。...