在K-Means聚类算法原理中,我们对K-Means的原理做了总结,本文我们就来讨论用scikit-learn来学习K-Means聚类。重点讲述如何选择合适的k值。
【每日一语】【每日一语】在年轻的时候,在那些充满了阳光的长长的下午,我无所事事,也无所惧怕,只因为我知道,在我的生命里有一种永远的等待。挫折会来,也会过去,热泪会流下,也会收起。没有什么可以让我气馁,因为,我有着长长的一...
对于监督学习算法而言,数据决定了任务的上限,而算法只是在不断逼近这个上限。世界上最遥远的距离就是我们用同一个模型,但是却有不同的任务。但是数据标注是个耗时耗力的工作,下面介绍几个图像标注工具:...
AI芯片作为产业核心,也是技术要求和附加值最高的环节,在AI产业链中的产业价值和战略地位远远大于应用层创新。腾讯发布的《中美两国人工智能产业发展全面解读》报告显示,基础层的处理器/芯片企业数量来看,中国有14家,美国3...
决策树是最简单的机器学习算法,它易于实现,可解释性强,完全符合人类的直观思维,有着广泛的应用。决策树到底是什么?简单地讲,决策树是一棵二叉或多叉树(如果你对树的概念都不清楚,请先去学习数据结构课程),它对数据的属性进行判...
同时在本微信公众号中,回复“SIGAI”+日期,如“SIGAI0515”,即可获取本期文章的全文下载地址(仅供个人学习使用,未经允许,不得用于商业目的)。...
在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法。本文关注于潜在语义索引算法(LSI)的原理。...
异常点检测,有时也叫离群点检测,英文一般叫做Novelty Detection或者Outlier Detection,是比较常见的一类非监督学习算法,这里就对异常点检测算法做一个总结。...
博士毕业于电子科技大学,美国西北大学访问学者,现执教于河南工业大学。中国计算机协会(CCF)会员,CCF YOCSEF郑州2018—2019年度副主席,ACM/IEEE会员。《品味大数据》一书作者。主要研究方向为大数据、人工智能、技术哲学。...
主要包括:K-means、DBSCAN、Density Peaks聚类(局部密度聚类)、层次聚类、谱聚类。