最新 最热

机器学习基本概念

多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。...

2019-05-23
0

ICLR 2019八大趋势:RNN正在失去光芒,强化学习仍最受欢迎

ICLR 2019过去有几天了,作为今年上半年表现最为亮眼的人工智能顶会共收到1591篇论文,录取率为31.7%。

2019-05-22
1

Facebook通过教机器人自学走路,推进发展更灵活的AI系统

机器人技术为推进人工智能提供了重要机会,因为教机器独立学习将有助于在其他场景中开发更有能力和更灵活的AI系统。与各种机器人合作,Facebook AI研究人员正在探索新技术,以突破人工智能的界限。...

2019-05-22
0

谷歌首席科学家:半监督学习的悄然革命

作为一个机器学习工程师,可能平时最常打交道的就是海量数据了。这些数据只有少部分是有标注的,可以用来进行监督学习。但另外一大部分的数据是没有标注过的。...

2019-05-22
0

安静的半监督学习革命,一起清理未标记的数据

对于机器学习工程师来说,访问大量数据十分重要,但有标记的数据很有限。处于此困境的人可能会查阅文献,思考下一步该做什么,而文献似乎都会给出一个现成的答案:半监督学习。...

2019-05-21
0

干货!谷歌首席科学家发文阐述“半监督学习革命”,想走出瓶颈先试试这个

谷歌首席科学家,谷歌大脑技术负责人Vincent Vanhoucke说,半监督学习革命已经来了。

2019-05-21
0

决策树完全指南(上)

在最初的时候,学习机器学习(ML)可能是令人生畏的。“梯度下降”、“隐狄利克雷分配模型”或“卷积层”等术语会吓到很多人。但是也有一些友好的方法可以进入这个领域,我认为从决策树开始是一个明智的决定。...

2019-05-21
1

03_有监督学习--简单线性回归模型(调用 sklearn 库代码实现)

有监督学习--简单线性回归模型(调用 sklearn 库代码实现)0.引入依赖1.导入数据(data.csv)2.定义损失函数3.导入机器学习库 sklearn4.测试:运行算法,从训练好的模型中提取出系数和截距5.画出拟合曲线6.附录-测试数据...

2019-05-19
1

02_有监督学习--简单线性回归模型(梯度下降法代码实现)

有监督学习--简单线性回归模型(梯度下降法代码实现)0.引入依赖1.导入数据(data.csv)2.定义损失函数3.定义模型的超参数4.定义核心梯度下降模型函数5.测试:运行梯度下降算法,计算最优的 w 和 b6.画出拟合曲线7.附录-测试数据...

2019-05-19
1

04_有监督学习--分类模型--K 近邻(kNN)

有监督学习--分类模型--K 近邻(kNN)0.引入依赖1.数据的加载和预处理2.核心算法实现3.测试4.自动化测试

2019-05-19
0