最新 最热

机器学习入门 5-2 最小二乘法

此时需要注意的是(x, y)为监督学习中的样本以及对应的标签,而a, b为需要求得的参数。在数学中很多时候,我们把损失函数用大写的“J”来表示(还有一些资料使用"Cost"作为损失函数,意思都是一样的)。...

2019-11-13
1

「LSTM 之父」亲笔万字长文,只为向世人证明:深度学习不是在母语为英语的地方被发明的

毫无疑问,深度学习是影响当今世界科技发展的最重要的技术之一。2018 年,深度学习「三巨头」因其在这个领域的卓越贡献荣获图灵奖。在人们感慨人工智能迎来春天的同时,也有人为「LSTM 之父」Jürgen Schmidhuber 未能分享...

2019-11-13
1

浙大提出会打德扑的「自我博弈」AI,还会玩射击游戏

随着深度强化学习的快速发展,AI 已经在围棋等信息完整的游戏中战胜了人类专业玩家。然而,「星际争霸」等信息不完整游戏的研究还没有取得同样的进展。这类研究的一大问题是,它们很少从理论和量化的角度考虑对其训练和结...

2019-11-12
0

【长文详解】T5: Text-to-Text Transfer Transformer 阅读笔记

谷歌用一篇诚意满满(财大气粗)的基于实验的综述,试图帮助研究者们「拨开云雾见光明」。论文十分适合该领域的初学者通读,写的十分友好,不过由于涉及到的模型/技术很多,所以遇到不熟悉的部分还是需要自行了解。...

2019-11-12
0

【干货】22道机器学习常见面试题目

有监督学习:对具有概念标记(分类)的训练样本进行学习,以尽可能对训练样本集外的数据进行标记(分类)预测。这里,所有的标记(分类)是已知的。因此,训练样本的岐义性低。...

2019-11-12
1

【干货】22道机器学习常见面试题目

有监督学习:对具有概念标记(分类)的训练样本进行学习,以尽可能对训练样本集外的数据进行标记(分类)预测。这里,所有的标记(分类)是已知的。因此,训练样本的岐义性低。...

2019-11-12
1

对标 GLUE、ImageNet,谷歌推出视觉任务适应性基准 VTAB

众所周知,图像分类领域有 ImageNet 数据集,自然语言处理领域有 GLUE 基准,这些基准在对应领域的进展中发挥了重要作用。终于,谷歌推出了视觉任务适应性领域的基准 VTAB(Visual Task Adaptation Benchmark),该基准有助于用户...

2019-11-12
0

干货!吴恩达亲自为这份深度学习专项课程精炼图笔记点了赞!

吴恩达在推特上展示了一份由 TessFerrandez 完成的深度学习专项课程信息图,这套信息图优美地记录了深度学习课程的知识与亮点。因此它不仅仅适合初学者了解深度学习,还适合机器学习从业者和研究者复习基本概念。机器之...

2019-11-12
1

机器学习笔记P1(李宏毅2019)

从最左上角开始看: Regression(回归):输出的目标是一个数值。如预测明天的PM2.5数值。 接下来是Classification(分类):该任务的目标是将数据归为某一类,如进行猫狗分类。 在分类任务中,将涉及线性和非线性的模型。其中,非...

2019-11-07
0

52道机器学习常见面试题目

有监督学习:对具有概念标记(分类)的训练样本进行学习,以尽可能对训练样本集外的数据进行标记(分类)预测。这里,所有的标记(分类)是已知的。因此,训练样本的岐义性低。...

2019-11-07
1