向AI转型的程序员都关注了这个号
在这篇文章中,我们介绍了 HugeCTR,这是一个面向行业的推荐系统训练框架,针对具有模型并行嵌入和数据并行密集网络的大规模 CTR 模型进行了优化。
摘要:本篇分享了kaggle比赛《Corporación Favorita Grocery Sales Forecasting》冠军方案。因为业务需要所以调研了商品销量预测比赛,重点学习了冠军方案的特征工程和模型构建,其中关于时间滑动窗口特征的构建非常巧妙,...
来源:Deephub Imba本文约1200字,建议阅读5分钟将Prophet的预测结果作为特征输入到 LightGBM 模型中进行时序的预测。我们以前的关于使用机器学习进行时间序列预测的文章中,都是专注于解释如何使用基于机器学习的方法进行...
摘要:本篇主要介绍了项目中用于商业兴趣建模的DSSM双塔模型。作为推荐领域中大火的双塔模型,因为效果不错并且对工业界十分友好,所以被各大厂广泛应用于推荐系统中。通过构建user和item两个独立的子网络,将训练好的两个“...
摘要:本篇从理论到实践学习了腾讯2020广告大赛冠军鱼佬团队提供的解决方案。首先是比赛介绍及理解;然后重点介绍了冠军方案,主要包括特征工程、模型介绍以及比赛复盘结果分析;接着实践了冠军开源的代码;最后重点思考了冠军...
时间序列预测是机器学习中的一项常见的任务,具有非常广泛的应用,例如:电力能源、交通流量和空气质量等预测。传统的时间序列预测模型往往依赖于滚动平均、向量自回归和自回归综合移动平均。另一方面,最近有人提出了深度学...
作者:Eryk Lewinson翻译:张睿毅校对:张睿毅本文约4200字,建议阅读10分钟本文我们主要使用非常知名的Python包,以及依赖于一个相对不为人知的scikit-lego包。 标签:数据帧, 精选, 机器学习, Python, 技术演练 设置和数据 在本...