最新 最热

端到端的特征转换示例:使用三元组损失和 CNN 进行特征提取和转换

虽然大多数的特征策略都与领域相关,并且必须针对每个应用程序进行专门调整。但特征工程是操纵原始数据和提取机器学习特征的过程,探索性数据分析 (EDA) 可以使用特征工程技术来可视化数据并在执行机器学习任务之前更好...

2022-06-04
0

高质量中文预训练模型汇总

向AI转型的程序员都关注了这个号

2022-06-02
0

如何用神经网络判断奇偶数?

这个题目挺有意思【看着简单,实际上。。。】,有点玄学的味道,又有点知识的味道,这也太难为神经网络了。

2022-06-02
0

可能是全网特征工程实操最通透的...

目前网上能搜到的讲特征工程方法基本都是教材里的那一套:缺失值填充,归一化,category特征one-hot,降维等等。但是指望靠这些提升模型性能是远远不够的,特别是对强大的xgb/lgb上述方法几乎是毫无意义。也有一些文章总结了特...

2022-06-02
0

特征工程在实际业务中的应用!

首先明确一下问题,“特征工程在实际业务中的应用”,也就是领域业务知识和机器学习建模的相互结合。下面会对特征工程简单介绍,并且用自己工作中实际参与的项目给大家分享在银行贷款申请反欺诈场景&零售线上APP推荐场景的...

2022-06-02
0

一文讲解各种机器学习算法选型思路

这是知乎上一个问题:k近邻、贝叶斯、决策树、svm、逻辑斯蒂回归和最大熵模型、隐马尔科夫、条件随机场、adaboost、em 这些在一般工作中分别用到的频率多大?一般用途是什么?需要注意什么?...

2022-06-02
0

一窥推荐系统的原理

推荐系统是建立在海量数据挖掘基础上,高效地为用户提供个性化的决策支持和信息服务,以提高用户体验及商业效益。常见的推荐应用场景如:

2022-06-02
0

电商反欺诈比赛的方案及代码分享!

本次 Apache Flink 极客挑战赛暨 AAIG CUP——电商推荐“抱大腿”攻击识别 赛题以电商推荐反作弊为背景,要求选手在少样本、半监督、隐私保护的场景下搭建风控模型来实时预测用户点击商品的行为是否恶意,实现对恶意流量...

2022-06-02
0

百行代码入手数据挖掘竞赛~

本实践以科大讯飞xDatawhale联合举办的数据挖掘赛为例,给出了百行代码Baseline,帮助学习者更好地结合赛事实践。同时,在如何提分上进行了详细解读,以便于大家进阶学习。...

2022-06-02
0

2021科大讯飞-车辆贷款违约预测赛事 Top1方案!

Hello,大家好。我是“摸鱼打比赛”队的wangli,首先介绍下自己吧,一枚半路出家的野生算法工程师。之所以起名字叫摸鱼打比赛,是因为当时5/6月份自己还处于业务交接没那么忙的一个状态中,然后想起自己也已经毕业两年,但对赛圈...

2022-06-02
0