最新 最热

写给人类的机器学习 2.1 监督学习

通过在数字广告上花费更多的钱,我们能挣多少钱?这个贷款的申请人是否能偿还贷款?股市明天会发生什么?

2022-12-01
1

写给人类的机器学习 一、为什么机器学习重要

本指南旨在让任何人访问。将讨论概率,统计学,程序设计,线性代数和微积分的基本概念,但从本系列中学到东西,不需要事先了解它们。

2022-12-01
1

R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测|附代码数据

最近我们被客户要求撰写关于信贷数据的研究报告,包括一些图形和统计输出。在本文中,我们使用了逻辑回归、决策树和随机森林模型来对信用数据集进行分类预测并比较了它们的性能...

2022-12-01
1

PYTHON链家租房数据分析:岭回归、LASSO、随机森林、XGBOOST、KERAS神经网络、KMEANS聚类、地理可视化|附代码数据

最近我们被客户要求撰写关于租房数据的研究报告,包括一些图形和统计输出。 1 利用 python 爬取链家网公开的租房数据;

2022-12-01
1

Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|附代码数据

最近我们被客户要求撰写关于信贷风控模型的研究报告,包括一些图形和统计输出。在此数据集中,我们必须预测信贷的违约支付,并找出哪些变量是违约支付的最强预测因子?以及不同人口统计学变量的类别,拖欠还款的概率如何变化?...

2022-12-01
0

Python 数据科学手册 5.8 决策树和随机森林

之前,我们深入研究了简单的生成分类器(见朴素贝叶斯分类)和强大的辨别分类器(参见支持向量机)。 这里我们来看看另一个强大的算法的动机 - 一种称为随机森林的非参数算法。 随机森林是组合方法的一个例子,这意味着它依赖于...

2022-12-01
1

Python 数据科学手册 5.6 线性回归

就像朴素贝叶斯(之前在朴素贝叶斯分类中讨论)是分类任务的一个很好的起点,线性回归模型是回归任务的一个很好的起点。 这些模型受欢迎,因为它们可以快速拟合,并且非常可解释。 你可能熟悉线性回归模型的最简单形式(即使用直...

2022-12-01
1

Python 数据科学手册 5.5 朴素贝叶斯分类

前四节对机器学习概念进行了总体概述。 在本节和随后的一节中,我们将仔细研究几种具体的监督和无监督学习算法,从这里以朴素贝叶斯分类开始。

2022-12-01
2

Python 数据科学手册 5.1 什么是机器学习

在我们查看机器学习方法的各种细节之前,先了解什么是机器学习,什么不是。机器学习通常被归类为人工智能的一个子领域,但是我发现分类往往会首先产生误导。机器学习的研究肯定来自于这一背景下的研究,但在机器学习方法的数...

2022-12-01
1

Scikit-learn 秘籍 第四章 使用 scikit-learn 对数据分类

分类在大量语境下都非常重要。例如,如果我们打算自动化一些决策过程,我们可以利用分类。在我们需要研究诈骗的情况下,有大量的事务,人去检查它们是不实际的。所以,我们可以使用分类都自动化这种决策。...

2022-12-01
1