最新 最热

Q&A特辑 | 关于模型开发与部署

这里有一份标准答案11月24日,顶象业务安全大讲堂系列课程之《智能模型平台》正式开讲,顶象人工智能总监无常从从模型平台的现状与需求出发,带大家了解了模型平台的开发环境与部署环境,并且就顶象的Xintell 模型平台 为大...

2022-12-02
1

pandas介绍

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。

2022-12-02
1

基于Python+深度学习+神经网络实现高度可用的生活垃圾分类机器人程序

设计一个基于深度学习的生活垃圾分类机器人软件系统,针对现实社会中产生的垃圾照片进行自动识别分类,对不同类别的垃圾,干垃圾,湿垃圾,可回收垃圾,有害垃圾等进行分类统计处理,减轻人工针对垃圾分类的工作量,提高垃圾分类的效...

2022-12-02
1

遗传算法+Springboot+前后端分离开发实现自动排课系统,课程管理系统

目前很多高校内部的课程管理及排课过程均是采用人工排课后再导入系统内部生成课程表,提供给学生用户查看。人工排课过程较为复杂,增加了排课错误的可能性,本次毕业设计基于java实现遗传算法实现自动排课,整体提供学生管理...

2022-12-02
1

12.PGL图学习之项目实践(UniMP算法实现论文节点分类、新冠疫苗项目实战,助力疫情)[系列九]

原项目链接:https://aistudio.baidu.com/aistudio/projectdetail/5100049?contributionType=11.图学习技术与应用图是一个复杂

2022-12-02
1

电商企业如何快速构建营销

电商平台要发起一场综合性的推广活动,需要明确参与活动的商品范围、促销价格、推广渠道以及如何触达到消费者等。很多营销推广活动规则复杂且不断变化,就需要使用模型来设计,例如邀人砍一刀的“免费提现”、多重阶梯的满...

2022-12-02
1

面向机器学习的特征工程 一、引言

机器学习将数据拟合到数学模型中来获得结论或者做出预测。这些模型吸纳特征作为输入。特征就是原始数据某方面的数学表现。在机器学习流水线中特征位于数据和模型之间。特征工程是一项从数据中提取特征,然后转换成适合...

2022-12-01
2

《Scikit-Learn与TensorFlow机器学习实用指南》第16章 强化学习

强化学习(RL)如今是机器学习的一大令人激动的领域,当然之前也是。自从 1950 年被发明出来后,它在这些年产生了一些有趣的应用,尤其是在游戏(例如 TD-Gammon,一个西洋双陆棋程序)和及其控制领域,但是从未弄出什么大新闻。直到 2...

2022-12-01
1

《Scikit-Learn与TensorFlow机器学习实用指南》第10章 人工神经网络介绍

鸟类启发我们飞翔,牛蒡植物启发了尼龙绳,大自然也激发了许多其他发明。从逻辑上看,大脑是如何构建智能机器的灵感。这是启发人工神经网络(ANN)的关键思想。然而,尽管飞机受到鸟类的启发,但它们不必拍动翅膀。同样的,ANN 逐渐...

2022-12-01
1

《Scikit-Learn与TensorFlow机器学习实用指南》第4章 训练模型

在之前的描述中,我们通常把机器学习模型和训练算法当作黑箱子来处理。如果你实践过前几章的一些示例,你惊奇的发现你可以优化回归系统,改进数字图像的分类器,你甚至可以零基础搭建一个垃圾邮件的分类器,但是你却对它们内部...

2022-12-01
1