最新 最热

【2022】Ubuntu18.04下利用Gazebo搭建赛道完成ROS机器人定位导航仿真【智能车】

【2022】Ubuntu18.04安装Gazebo9并与ROS连接(包括各种报错及解决方案)_QomolangmaH的博客-CSDN博客

2024-07-30
1

【深度学习实验】线性模型(五):使用Pytorch实现线性模型:基于鸢尾花数据集,对模型进行评估(使用随机梯度下降优化器)

线性模型是机器学习中最基本的模型之一,通过对输入特征进行线性组合来预测输出。本实验旨在展示使用随机梯度下降优化器训练线性模型的过程,并评估模型在鸢尾花数据集上的性能。...

2024-07-29
2

【深度学习实验】线性模型(四):使用Pytorch实现线性模型:使用随机梯度下降优化器训练模型

随机梯度下降的主要优点是计算效率高,尤其适用于大规模数据集。它也可以在每个训练周期中进行参数更新,因此可以更快地收敛。然而,由于每次迭代仅使用一个样本(或小批量样本),因此随机梯度下降的更新方向可能会更加不稳定,导...

2024-07-29
2

【深度学习实验】线性模型(三):使用Pytorch实现简单线性模型:搭建、构造损失函数、计算损失值

线性模型的优点包括简单、易于解释和计算效率高。它们在许多实际问题中都有广泛的应用。然而,线性模型也有一些限制,例如对非线性关系的建模能力较弱。在处理复杂的问题时,可以通过引入非线性特征转换或使用核函数进行扩...

2024-07-29
2

【深度学习实验】线性模型(二):使用NumPy实现线性模型:梯度下降法

本实验中,gradient_descent函数实现了梯度下降法的具体过程。它通过调用initialize_parameters函数初始化模型参数,然后在每次迭代中计算模型预测值、梯度以及更新参数值。...

2024-07-29
1

【深度学习实验】线性模型(一):使用NumPy实现简单线性模型:搭建、构造损失函数、计算损失值

线性模型的优点包括简单、易于解释和计算效率高。它们在许多实际问题中都有广泛的应用。然而,线性模型也有一些限制,例如对非线性关系的建模能力较弱。在处理复杂的问题时,可以通过引入非线性特征转换或使用核函数进行扩...

2024-07-29
1

【深度学习】概率图模型(二)有向图模型详解(条件独立性、局部马尔可夫性及其证明)

有向图模型(Directed Graphical Models)是概率图模型的一类,其中最为知名的代表是贝叶斯网络。这种模型在处理多变量概率关系方面表现出色,提供了一种直观、清晰的方法来描述随机变量之间的因果关系。...

2024-07-29
1

【深度学习】概率图模型(一)概率图模型理论简介

个可能的取值,其联合概率在高维空间中的分布很难直接建模。在没有任何独立性假设的情况下,我们需要为每一种组合分配一个概率值。每个变量有

2024-07-29
1

【2023】Unity(Unity Hub)、blender 安装 + 原神人物模型下载 + 使用Unity为模型添加动画

Unity官方下载_Unity最新版_从Unity Hub下载安装 | Unity中国官网

2024-07-29
1