今天为大家介绍的是来自Peter S. Kim团队的一篇论文。基于序列信息训练的大型语言模型能够学习到蛋白质设计的高级原则。然而,蛋白质的三维结构决定了它们的具体功能、活性和进化能力。这里,作者展示了一种结合了蛋白质...
今天为大家介绍的是来自Luonan Chen团队的一篇论文。空间解析转录组学(SRT)通过分析肿瘤微环境(TME)的细胞内分子网络和细胞间通讯(CCC),实现了对TME的精确剖析。然而,缺乏对细胞、基因和组织区域之间复杂关系的计算探索,极大...
今天为大家介绍一篇近期发表在Advanced Science上的论文:AI-Powered Mining of Highly Customized and Superior ESIPT-Based Fluorescent Probes。论文通讯作者为中南大学董界副教授和曾文彬教授,论文第一作者为硕士研...
今天为大家介绍的是来自美国密歇根州立大学的Guo-Wei Wei团队的一篇论文。尽管预训练的自然语言处理(NLP)模型在各个领域取得了成功,但它们在计算生物学中的应用受到了阻碍,因为它们依赖于生物序列而忽略了重要的三维(3D)结...
今天为大家介绍的是来自John D. Chodera团队的一篇论文。开发可靠且可扩展的分子力学(MM)力场——这些快速的用于描述分子系统势能面的经验模型——对于生物分子模拟和计算辅助药物设计是不可或缺的。在此,作者介绍了一...
在实际应用中,BCI系统依赖于对信号的精准解码,因此对脑信号的智能、精准分析是BCI系统成功的关键。然而,在传统的BCI系统中,由于EEG信号的个体间差异和非平稳性,新用户在使用前通常需要进行针对性的校准,采集该用户数据以调...
导读:在机器学习领域,处理类别型特征一直是个棘手的问题。传统的GBDT算法在这一领域的表现并不尽如人意,直到CatBoost的出现。今天,我们就来聊聊CatBoost是如何优雅地解决这一难题的,以及它在实际应用中的强大之处。...
RSS https://github.com/wanghenshui/cppweeklynews/releases.atom
在Diffusion模型之前,生成模型主要还是基于GAN,而CycleGAN和Pix2Pix则是基于GAN来进行风格迁移的非常有代表性的工作,那么,现如今Diffusion模型大火,当CycleGAN遇到Diffusion会碰撞出什么火花呢?...
上下文学习,即从上下文示例中学习,是Transformer一项令人印象深刻的能力。然而,由于学习瓶颈的出现——在训练过程中模型的上下文学习能力几乎没有或没有提升的时期——训练Transformer具备这种上下文学习技能是计算密集...