大语言模型在众多应用领域实现了突破性的进步,显著提升了各种任务的完成度。然而,其庞大的规模也带来了高昂的计算成本。这些模型往往包含数十亿甚至上千亿参数,需要巨大的计算资源来运行。特别是,当需要为特定的下游任务...
论文标题:Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check
传统特征选择(非因果特征选择)和因果特征选择是两种不同的特征选择方法,它们在目标、方法和应用场景上有所区别。
Transformer 起源于 NeurIPS 2017 那篇名为 Attention Is All You Need 的著名论文。截止目前,该论文的引用数已经超过 10 万。
LibTorch 是 PyTorch 提供的一个二进制发行版,包含了所有必要的头文件、库和 CMake 配置文件,便于开发者依赖 PyTorch 开发应用。用户可以从 PyTorch 官网下载包含最新 LibTorch 分发的 ZIP 档案。本文还提供了一个使用...
CPython 是 Python 编程语言的官方和最广泛使用的实现。它是用 C 语言编写的,因此得名 “CPython”。作为 Python 生态系统的核心,了解 CPython 的工作原理、主要特性、优势以及对 Python 开发者是至关重要的。下面我将...
论文标题:ExpertPrompting: Instructing Large Language Models to be Distinguished Experts
论文题目:Generalizing from a Few Examples: A Survey on Few-shot Learning(ACM Computing Surveys,中科院 1 区)
交叉熵是一个衡量两个概率分布之间差异的指标。在机器学习中,这通常用于衡量真实标签的分布与模型预测分布之间的差异。对于两个概率分布
小样本学习(Few-shot Learning,FSL)作为机器学习的一个重要分支,特别强调从极少量的标注数据中学习和泛化的能力。这在众多领域都有广泛的应用,主要是因为在现实世界中,获取大量标注数据往往是成本高昂且时间消耗巨大的。以...