一句话总结:英伟达发布的财报显示出色的业绩,主要得益于 AI 大模型的爆火和算力需求的增加。
三院院士 Michael I. Jordan 指出:大模型在两个方向仍需 “努力“
scikit-learn 官方文档:https://scikit-learn.org/stable/#
论文标题:Long-form factuality in large language models
L1 和 L2 正则化是机器学习中常用的两种正则化方法,对于应对过拟合问题和提高模型泛化能力具有重要作用。
随机森林由众多独立的决策树组成(数量从几十至几百不等),类似于一片茂密的森林。它通过汇总所有决策树的预测结果来形成最终预测。最终结果是通过对所有树的预测进行投票或加权平均计算而获得。...
自动化机器学习(AutoML)旨在自动化机器学习模型的开发流程,通过简化或去除需要专业知识的复杂步骤,让非专家用户也能轻松创建和部署机器学习模型。AutoML 的核心组件包括:数据预处理、特征工程、模型选择、模型训练与超参...
集成学习是一种强大的机器学习范式,它通过构建并结合多个学习器来提高预测性能。其中,随机森林、AdaBoost 和 XGBoost 是集成学习领域中著名且广泛应用的方法。尽管这些方法共享一些基本概念,但它们在算法原理、损失函数...
Logistic 回归非常适用于二分类问题的主要原因在于它的核心机制和输出特性。首先,Logistic 回归模型基于概率的理念,通过 Sigmoid 函数转换输入特征的线性组合,将任意实数映射到 [0, 1] 区间内。这样的输出可以解释为预...
论文标题:Instruction Tuning for Large Language Models: A Survey