对比学习在计算机视觉的发展历程大概分为四个阶段(1)百花齐放:有InstDisc(Instance Discrimination)、CPC、CMC代表工作。在这个阶段方法模型都还没有统一,目标函数也没有统一,代理任务也没有统一,所以是一个百花齐放的时代...
最近有一些基于对比学习的无监督学习的工作取得了不错的效果,这类对比学习方法的本质上是构造一个动态的字典。我们先解释一下对比学习。
从今天起就要开始认真的学习Machine Learning了。在网上查找了很多的资料,也大概看了下deeplearning.net上的一些教程。但是既没有一丝的学习基础,也没有过硬的python编程能力,而且英语阅读水平也跟不上,学起来真是相当的...
来自Amazon,google,Meta, Microsoft等的面试问题,问题很多所以对问题进行了分类整理,本文包含基础知识和数据分析相关问题
来自Amazon,谷歌,Meta, Microsoft等的面试问题,本文接着昨天的文章整理了机器学习和深度学习的问题
无监督学习(Unsupervised Learning)是和监督学习相对的另一种主流机器学习的方法,无监督学习是没有任何的数据标注只有数据本身。
深度学习理论的突破和深度学习硬件加速能力的突破,使AI在模式识别、无人驾驶、智力游戏领域取得空前的成功。学术界和工业界全力以赴掀起人工智能的新一轮热潮。各大互联网巨头纷纷成立人工智能研究中心,唯恐在新一轮人...
无监督学习不依赖任何标签值,通过对数据内在特征的挖掘,找到样本间的关系,比如聚类相关的任务
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。...
半监督学习(SSL)是一种机器学习技术,其中任务是从一个小的带标签的数据集和相对较大的未带标签的数据中学习得到的。SSL的目标是要比单独使用有标记数据训练的监督学习技术得到更好的结果。这是半监督学习系列文章的第...