尽管最近大型科技公司进行了大规模裁员,但数据经理、分析师、数据管理员和顾问的未来一片光明。事实上,预计需要数据科学技能的工作数量 增长 27.9% 根据美国劳工统计局的数据,到 2026 年。...
数据和分析正在帮助改变商业世界,随着我们进入 2023 年,现在正是预测如何使用数据的最佳时机,为新的一年的顶级数据和分析趋势做好准备。当今推动市场的一些与数据相关的主要趋势包括数据科学、数据分析和人工智能 (AI) ...
考虑从事数据科学职业?好消息:美国劳工统计局估计,数据科学家的就业率将 增长 36% 2021 年至 2031 年期间,预计届时将创造 40,500 个以上的就业岗位。随着全球产生的数据量快速增长,对数据科学专业人员的需求也在增长,他们...
作者 | Humanloop译者 | Sambodhi策划 | 蔡芳芳关于如何构建机器学习工具、未来的需求和为什么领域专家在人工智能的未来中扮演重要的角色,我们想与大家分享一些最令人惊讶的经验。在过去的一年里, Humanloop 一直在开...
在这最后一章,这本书接近尾声。我将首先回顾我在前面十章中讨论的内容,然后给你三条建议,并提供一些资源来进一步探索我们触及的相关主题。最后,如果您有任何问题、评论或新的命令行工具要分享,我提供了一些与我联系的方法...
通晓多种语言的人就是能讲多种语言的人。在我看来,通晓多种语言的数据科学家是指使用多种编程语言、工具和技术来获取、清理、探索和建模数据的人。...
在本章中,我们将执行 OSEMN 模型的第四步:数据建模。一般来说,模型是对数据的抽象或更高层次的描述。建模有点像创建可视化,因为我们从单个数据点后退一步来看更大的画面。...
在前面的章节中,我们一直在处理一次性处理整个任务的命令和管道。然而,在实践中,您可能会发现自己面临一个需要多次运行相同命令或管道的任务。例如,您可能需要:...
在所有这些艰苦的工作之后(除非你已经有了干净的数据),是时候享受一些乐趣了。现在您已经获得并清理了数据,您可以继续进行 OSEMN 模型的第三步,即探索数据。...
我希望现在您已经开始认识到命令行是一个非常方便的数据处理环境。您可能已经注意到,由于使用了命令行,我们: