方式2:从本地文件中读取进来。现在本地有一个文件:学生信息.xlsx直接通过pd.read_excel()读进来:
用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易...
导读:阅文作为国内最大的网络文学公司,我们在实践过程中,总结了一套适合自身业务特点的用户画像方法论,及实践经验。本文将介绍为什么需要用户画像,以及如何做用户画像,并结合在阅文场景下所面临的问题,为大家分享下我们在用...
导读:虚拟网络中存在部分黑产用户,这部分用户通过违法犯罪等不正当的方式去谋取利益。作为恶意内容生产的源头,管控相关黑产用户可以保障各业务健康平稳运行。当前工业界与学术界的许多组织通常采用树形模型、社区划分等...
数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础,没有可信的数据,数据挖掘构建的模型将是空中楼阁。...
1. 索引----1. 索引的原理是什么?对列值创建排序存储,数据结构={列值、行地址}。在有序数据列表中就可以利用二分查找(或者其他方式)快速找到要查找的行的地址,再根据地址直接取行数据。2. 为什么称为倒排索引?英文原名为 I...
具体到新词提取中,给定字符串S作为词语选取,X定义为左边可能出现的字符(左邻字),则成H(X)为S的左信息熵。
在实际工作中,尤其是web数据的传输,我们经常会遇到json数据。它不像常见的文本数据、数值数据那样友好,而且它和Python中的字典类型数据又很相像,给很多人造成了困扰。...
k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。简单地说,k-近邻算法就是采用不同特征值之间的距离来进行分类,算法主要特点为:...
本文重点介绍的是可视化库Highcharts的相关基础知识,以及如何利用Highcharts来绘制不同场景和需求下的精美柱状图,主要内容包含: