当我开始走上数据科学的职业道路,我经常面临的问题是为我的具体问题选择最合适的算法。如果你像我一样,当你打开一些关于机器学习算法的文章,你会看到许多详细的描述。矛盾的是,他们并没有减轻选择的压力。...
如果说互联网的目标就是连接一切,那么推荐系统的作用就是建立更加有效率的连接,推荐系统可以更有效率的连接用户与内容和服务,节约了大量的时间和成本。...
近十年里,top-N商品推荐是隐式反馈中一个被广泛研究的课题,其目的是从大量数据中识别出用户可能偏爱的一小部分物品。
导读:Angel是腾讯自研的分布式高性能的机器学习平台,支持机器学习、深度学习、图计算以及联邦学习等场景。Angel的深度学习平台已应用在腾讯的很多个场景中。所以今天会为大家介绍Angel:深度学习在腾讯广告推荐系统中的...
在本教程中,我们将仅使用Python和OpenCV,并借助背景减除算法非常简单地进行运动检测。
本文介绍的论文是SIGIR20上第四范式发表的一篇文章,针对当前推荐系统模型没有利用域内信息,不同数据泛化性较差等问题,提出了Network On Network(简称NON),一起来学习一下。...
今天介绍的是CIKM 19上雅虎发表的一篇文章,主要介绍了如何在广告点击率预估中进行软频率控制,避免过多的给某一用户展示太多次同一广告造成的点击率下降和用户体验损失。一起来学习一下。...
在学习和应用推荐算法的过程中,发现越来越多的文章在描述深度学习应用在推荐系统上的方法,不可否认深度学习的发展给推荐系统带来了巨大的进步,但是传统的经典算法仍然是非常值得学习的,毕竟可以作为一个比较高的baseline...
AAAI中推荐系统的文章并不多,目之所及处仅有四篇。内容上覆盖了评论推荐、多目标推荐以及图神经网络等话题。
我于2020年8月受“第一届工业级推荐系统研讨会”的邀请,做了题为“工业级推荐系统最新的挑战和发展”的主题演讲。我们就依据这个演讲的内容作为一个起点,来聊一聊工业级推荐系统的一些特点,尤其是和推荐系统的学术研究...