本次分享主要关注异构图(或者叫异构网络)在数据挖掘中的应用,特别是异构图交互模型在推荐系统中的应用。通过分析前期工作的两类思路,一是基于基于图中邻居的信息,另一个是基于元路径的信息;重点探讨了交互信息在两种思路中...
Sequential Recommender Systems: Challenges, Progress and Prospects(IJCAI2019)
最近读完了李航、何向南的《Deep learning for matching in search and Recommendation》,文章思路清晰,总结详实到位,值得一再翻阅,就想借这篇文章结合自己最近一年多的推荐召回工作内容,总结一下推荐系统中的深度召回模...
RecBole (中文名称:"伯乐",意取"世有伯乐,然后有千里马"),由中国人民大学的AI Box团队与北京邮电大学、华东师范大学的科研团队联合开发出品。...
今天我们剖析的也是推荐领域的经典论文,叫做Wide & Deep Learning for Recommender Systems。它发表于2016年,作者是Google App Store的推荐团队。这年刚好是深度学习兴起的时间。这篇文章讨论的就是如何利用深度学习模...
本文介绍CIKM20上微信发表的一篇文章《Learning to Build User-tag Profile in Recommendation System》,主要介绍了微信看一看("Top Stories")中,如何进行用户对标签的兴趣建模,进而提升召回和推荐的效果。...
深入理解推荐系统:Fairness、Bias和Debiasmp.weixin.qq.com
今天跟大家分享的是一篇发表在RecSys2020推荐系统年会上的关于推荐系统Benchmark的文章。你是否还记得关于MLP or IP:推荐模型到底用哪个更好?问题的激烈讨论,又或你是否还记得关于评论文本信息对推荐真的有用吗?问题的深...
协同过滤是推荐系统恒久不变的主题。随着时间的推移,它也不再是那个经典的、苍老的协同过滤,反而在各大顶会中洗练出了更花哨的光华,例如:
推荐系统的技术架构图:Netflix 的推荐系统的经典架构图: