本文主要记录切换项目至TF2.0+后使用TFRecordDataset保存训练数据与使用estimator建模及后续的模型或者checkpoint加载使用预测的一些基本方法及踩过的坑。
作为【推荐系统】系列文章的第七篇,将以CIKM2020中的一篇论文“Search-based User Interest Modeling with Lifelong Sequential Behavior Data for Click-Through Rate Prediction”作为今天的主角,主要介绍针对Lif......
内存回收机制:就是释放掉在内存中已经没有用的对象,要判断怎样的对象是没用的,有两种方法:
xDeepFM用改良的DCN替代了DeepFM的FM部分来学习组合特征信息,而FiBiNET则是应用SENET加入了特征权重比NFM,AFM更进了一步。在看两个model前建议对DeepFM, Deep&Cross, AFM,NFM都有简单了解,不熟悉的可以看下文章最后其他m...