作者对这本书的推荐序:https://zhuanlan.zhihu.com/p/403191691
神经网络非常擅长学习一件事。无论是下棋还是折叠蛋白质,只要有足够的数据和时间,神经网络都能取得惊人的效果。不幸的是,网络目前无法擅长一项以上的任务。你可以训练一个网络擅长某件事,但是一旦你试图教给网络其他东西...
↑开局一张图,故事全靠编。我常常会扪心自问,一个连本行工作都干不好的人,还有时间去捣鼓别的领域,去“学习”别的领域的新知识?然鹅,自诩为“Copy攻城狮”的我,膨胀到像 学一波AI,不求结果,为了兴趣愿意去尝试,哪怕到头来竹篮...
在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个...
之前本号就有一篇文章是关于用Python编写一个"拿石子"游戏,一个能让你与电脑对弈的小游戏,但其中电脑玩家的选择是随机的,意味着你是与一个智障电脑在玩游戏。...
内容描述:俄勒冈州立大学的 Cassie 在 53 分钟里完成了一段五公里慢跑,刷新了双足机器人的运动记录。
神经网络是个出色的绘画家早已不是什么大新闻,它能把一副草图变成风景画,两幅不同风格的画之间进行风格迁移。
最新消息,华人学者、加州大学圣巴巴拉分校(UCSB)助理教授王宇翔发表的题为“Optimal Dynamic Regret in Exp-Concave Online Learning”的研究论文获得了 COLT 2021 的最佳学生论文奖。...
强化学习(Reinforcement Learning)和遗传算法(Genetic Algorithm)都是受自然启发的AI方法,它们有何不同?更重要的是,在哪些情况下,其中一种会比另一种更受青睐?”...