在该项目中,研究者把股票市场的历史价格走势看作一个复杂的不完全信息环境,而智能体需要在这个环境中最大化回报和最小化风险。相比于其他传统机器学习算法,深度强化学习的优势在于对股票交易任务进行马尔可夫决策过程建...
论文 1:A Neural Network Solves and Generates Mathematics Problems by Program Synthesis: Calculus, Differential Equations, Linear Algebra, and More
今天给大家分享一下南大Lamda实验室俞扬老师的牛年总结,该实验室在国内强化学习领域属于Top2级别的,17年本科保研时有幸参加过俞扬老师的面试,他为人非常和蔼,当时的面试题是讲述一下强化学习中的Q-learning与DQN算法,后来...
Efficient Deep Reinforcement Learning via Adaptive Policy Transfer
路径规划多智能体强化学习路径规划基于以上分析,移动机器人智能路径规划方法研究虽然取得了重要成果,但仍存在局限性,如遗传算法、蚁群算法容易陷入局部最优,神经网络算法需要大量样本。目前的改进算法以多种算法相结合、...
就在今年 9 月,这款从开放公测起便屡次登顶国内外讨论热度和手游吸金榜第一的开放世界冒险游戏更新了版本,添加 / 丰富了地图,并且上线了一款小游戏——钓鱼。游戏中多个水域都有钓鱼点,不同的位置可以钓不同的鱼。...
深度强化学习是人工智能最有趣的分支之一。它是人工智能社区许多显着成就的基石,它在棋盘、视频游戏、自动驾驶、机器人硬件设计等领域击败了人类冠军。...
两只新生猫的运动方式是否为主动,对视觉感知能力的影响非常大。这启发了人工智能中的具身学习范式,其中最关键的要素便是——主动。
这次用的环境是移动倒立摆CartPole环境,建立环境模型,主要是对reword进行定义
既然数据增强手段能够提高模型的泛化能力,那么我们自然希望通过一系列数据增强的组合获得最优的泛化效果,从而衍生出了一系列组合增强手段,这里我们介绍其中最著名也最常用的两个手段,AutoAugment 和 RandAugment。...