本文对 CVPR 2021 检测大类中的“伪装目标检测”、“旋转目标检测”领域的论文进行了盘点,将会依次阐述每篇论文的方法思路和亮点。在极市平台回复“CVPR21检测”,即可获得打包论文 >>加入极市CV技术交流群,走在计算机视...
我们提出了一种简单而有效的自监督目标检测方法。无监督的预训练方法最近被设计用于目标检测,但是它们通常在图像分类方面有缺陷,或者相反。与它们不同,DetCo在下游实例级密集预测任务上传输良好,同时保持有竞争力的图像...
1、Improved detection of small objects in road network sequences using CNN and super resolution
近年来,在深度卷积神经网络(CNNs)的帮助下,图像和视频监控在智能交通系统(ITS)中取得了长足的进展。 作为一种先进的感知方法,智能交通系统对视频监控中每一帧感兴趣的目标进行检测是其广泛的研究方向。 目前,在照明条件...
近年来,少样本目标检测被广泛用于处理数据有限的情况。虽然大多数以前的工作仅仅集中在少样本类别的性能上,我们声称检测所有类别是至关重要的,因为测试样本可能包含现实应用中的任何实例,这需要少样本检测器在不忘记的情...
弱监督目标检测(WSOD)和定位(WSOL),即使用图像级标签检测图像中包含边界框的多个或单个实例,是CV领域中长期存在且具有挑战性的任务。 随着深度神经网络在目标检测中的成功,WSOD和WSOL都受到了前所未有的关注。 在深度学...
现有的旋转目标检测器大多继承自水平检测范式,因为后者已经发展成为一个成熟的领域。 然而,由于当前回归损失设计的局限性,尤其是对于大纵横比的目标,这些检测器难以在高精度检测中突出表现。 本文从水平检测是旋转物体检...
卷积神经网络(CNNs)在计算机视觉中无处不在,具有无数有效和高效的变化。最近,Container——最初是在自然语言处理中引入的——已经越来越多地应用于计算机视觉。早期的用户继续使用CNN的骨干,最新的网络是端到端无CNN的T...
学习从很少的训练例子中检测图像中的目标是具有挑战性的,因为看到建议框的分类器只有很少的训练数据。当有一个或两个训练例子时,就会出现一个特别具有挑战性的训练方案。在这种情况下,如果区域建议网络(RPN)甚至漏掉一...
水下目标检测技术已引起了人们的广泛关注。 然而,由于几个挑战,这仍然是一个未解决的问题。 我们通过应对以下挑战,使之更加现实。 首先,目前可用的数据集基本上缺乏测试集注释,导致研究者必须在自分测试集(来自训练集)上...