今天给大家介绍的是微软亚洲研究院的一篇文章”Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”。从语言到视觉应用Transformer的挑战来源于两个领域的差异,例如和文本字词相比视觉实体的...
图像输入无非就是图片识别嘛,再通俗一点就是识别手机中的照片,分析里面的物品,然后进行垃圾分类。图像识别还是有很多的SDK可以使用的,这里面我目前用过的就是百度的图像识别,感觉还是蛮好的,而且有我之前的文章做普遍,那么...
英特尔首款10nm工艺的服务器处理器来了,基于Ice Lake的第三代至强可扩展处理器正式发布。
近年来,行人重识别(Person Re-Identification,简称ReID)在计算机视觉领域可谓火遍了“大江南北”。脱胎于行人重识别,行人搜索(Person Search)问题在2017年的CVPR会议上被首次提出。与ReID的单一识别任务不同,行人搜索结合了...
作者在kaggle比赛中从建立基线到一步一步的优化过程,最终将performance提升了一倍,非常好的竞赛经验总结文章。
自 2017 年 6 月谷歌提出 Transformer 以来,它便逐渐成为了自然语言处理领域的主流模型。最近一段时间,Transformer 更是开启了自己的跨界之旅,开始在计算机视觉领域大展身手,涌现出了多个基于 Transformer 的新模型,如谷...
本文分享主动学习用于目标检测的论文『Consistency-based Active Learning for Object Detection』
大家好,我是cv君,很多大创,比赛,项目,工程,科研,学术的炼丹术士问我上述这些识别,该怎么做,怎么选择框架,今天可以和大家分析一下一些方案:...
感觉自己什么也不会,导师放养,又想要拿一个offer,但时间有限,只有一年半。我想,很多同学在硕士阶段可能都有这样的困惑。本来这是一个很好的问题,但让我遗憾的是,高票回答聊的都是项目经验、竞赛、简历、LeetCode这些。感觉...
首先基于一个现象:人类在对事物进行观察的时候,是能够检测到每个实例,并按照自己已知的知识来对每个实例进行分类,有认知的归属到对应类别,无认知的归属到未知(unknown),而过往的深度学习检测任务所完成的工作只能对已有认...