今天来介绍一下DarkNet中卷积层的前向传播和反向传播的实现,卷积层是卷积神经网络中的核心组件,了解它的底层代码实现对我们理解卷积神经网络以及优化卷积神经网络都有一些帮助。...
论文名称:A Fast and Accurate Dependency Parser using Neural Networks
论文名称:Why Gradient Clipping Accelerates Training: A Theoretical Justification for Adaptivity
这是卷积神经网络学习路线的第19篇文章,主要为大家介绍一下旷世科技在2017年发表的ShuffleNet V1,和MobileNet V1/V2一样,也是一个轻量级的卷积神经网络,专用于计算力受限的移动设备。新的架构利用两个操作:逐点组卷积(poi...
继续来探索Anchor-Free目标检测算法,前面讲了Anchor-Free的起源 目标检测算法之Anchor Free的起源:CVPR 2015 DenseBox ,其实同期另外一个有名的目标检测算法YOLOV1也是Anchor-Free系列的了。Anchor-Free系列相比于Ancho...
我们知道一般的神经网络几乎能够拟合任意有界函数,万能逼近定理告诉我们如果函数的定义域和值域都是有界的,那么一定存在一个三层神经网络几乎处处逼近,这是普通的nn。但是如果我们回到卷积神经网络,我们会发现我们的输...
导读:近年来,作为一项新兴的图数据学习技术,图神经网络(GNN)受到了非常广泛的关注。2018年年末,发生了一件十分有趣的事情,该领域同时发表了三篇综述类型论文,这种“不约而同”体现了学术界对该项技术的认可。...
人工神经网络(Artificial Neural Networks,ANN)是一种模拟生物神经系统的结构和行为,进行分布式并行信息处理的算法数学模型。ANN通过调整内部神经元与神经元之间的权重关系,从而达到处理信息的目的。而卷积神经网络(Convol...
这是一个值得思考的问题。机器学习算法并不缺乏,那么为什么数据科学家会倾向于深度学习算法呢?神经网络提供了传统机器学习算法不具备的功能吗?...
推荐一个Tensorflow发布的系列视频——“Machine Learning: From Zero to Hero with TensorFlow”(机器学习: 从零到一学习Tensorflow),每个视频都很简短,有配套的案例代码,非常适合用一个下午的时间完整的熟悉机器学习、...