最新 最热

CAM 论文阅读

重新审视《 Network in network》中提出的全局平均 池化层(global average pooling),并阐明了它是如何通过图片标签就能让卷积神经网络具有卓越的定位能力。虽然这项技术以前被当做正则化训练的一种方法,但是我们发现它实...

2020-09-21
0

深度学习-卷积神经网络原理

卷积神经网络又称作(ConvNet, CNN),它的出现解决了人工智能图像识别的难题,图像识别数据量大,并且在识别的过程中很难保留原有的信息,因此卷积的作用就体现在这里。比如我们经常说的像素,100W像素,那就是,1000X1000个像素点,同...

2020-09-15
0

卷积神经网络(猫狗分类)

数据增强是从现有的训练样本中生成更多的训练数据,方法是利用多种能够生成可信图像的随机变换来增加样本,比如对图片进行角度变换,平移等方法目的是为了防止模型的过拟合...

2020-09-15
0

深度学习-卷积神经网络

在之前的分类学习中,使用普通的神经网络能够达到97.8的精确度,使用卷积神经网络能够达到0.99的精确度

2020-09-15
0

CVPR 2020 最佳论文提名 | 神经网络能否识别镜像翻转

2020年让我们不断见识到“后浪”的超强力量,也让世界看到了瞩目的华人新星。在今年6月举办的CVPR中,年龄最小的一位一作获奖者甚至还在本科阶段。他就是来自康奈尔大学的四年级学生、98年出生的AI科学新秀——林之秋。...

2020-09-14
0

目标检测 | Anchor free之CenterNet深度解析

原论文名为《Objects as Points》,有没有觉得这种简单的名字特别霸气,比什么"基于xxxx的xxxx的xxxx论文"帅气多了哈。

2020-09-11
0

squeezenet 论文阅读

最近对深卷积神经网络 (CNNs) 的研究主要集中在提高计算机视觉数据集的精确度上。对于给定的精度级别, 通常可以用不同的 CNN 体系结构来实现了该精度级别。而具有更少参数的 CNN 体系结构具有以下几个优点:...

2020-09-08
0

汇总 | OpenCV DNN模块中支持的分类网络

OpenCV DNN基于深度学习中的卷积神经网络技术实现对常见计算机视觉任务完成,这些支持模型的结构与相关的论文笔者做了汇总。今天这里汇总一下支持的图像分类模型。...

2020-09-08
0

复杂网络是怎么应用于神经网络上

从随机网络到无尺度网络,复杂性蕴含于万物之间的链接,我们看到在网络中,表面的无序和深层的有序共存。网络普遍具有先发优势、适者生存、健壮和脆弱并存的特点,枢纽节点和层级结构在各种网络中广泛存在。这些复杂网络的规...

2020-09-08
0

使用OpenCV对运动员的姿势进行检测

如今,体育运动的热潮日益流行。同样,以不正确的方式进行运动的风险也在增加。有时可能会导致严重的伤害。考虑到这些原因,提出一种以分析运动员的关节运动,来帮助运动员纠正姿势的解决方案。...

2020-09-04
0