论文网址:Fully Convolutional Adaptation Networks for Semantic Segmentation
图像像素中心化: (R,G,B)减去各自通道的均值 防过拟合,提高泛化能力: 数据增强x10 256x256中提取中心和四角的224x22
提出了一种基于区域卷积网络的快速目标检测方法(Fast R-CNN)。Fast R-CNN建立在以前工作的基础上,使用深度卷积网络有效地分类目标建议。与之前的工作相比,Fast R-CNN在提高训练和测试速度的同时,也提高了检测精度。Fast...
卷积神经网络(CNNs)的核心构件是卷积算子,它通过在每一层的局部接受域内融合空间和信道信息来构造信息特征。之前的大量研究已经研究了这种关系的空间成分,试图通过提高整个特征层次的空间编码质量来增强CNN的代表性。...
在基于区域的卷积神经网络的浪潮中,目标检测领域已经取得了显著的进展,但是它们的训练过程仍然包含许多尝试和超参数,这些参数的调优代价很高。我们提出了一种简单而有效的在线难样本挖掘(OHEM)算法,用于训练基于区域的Co...
我们训练了一个大型的深度卷积神经网络,将ImageNet lsvprc -2010竞赛中的120万幅高分辨率图像分成1000个不同的类。在测试数据上,我们实现了top-1名的错误率为37.5%,top-5名的错误率为17.0%,大大优于之前的水平。该神经网...
研究了图像超分辨率(SR)对低分辨率图像中目标检测任务的影响。直观上,SR对目标检测任务产生了积极的影响。虽然之前的一些工作证明了这种直觉是正确的,但是在这些工作中,SR和检测器是独立优化的。摘要提出了一种新的深度...
我们提出了一类有效的模型称为移动和嵌入式视觉应用的移动网络。MobileNets是基于流线型架构,使用深度可分卷积来建立轻量级深度神经网络。我们介绍了两个简单的全局超参数,它们可以有效地在延迟和准确性之间进行权衡。...
在此,要区别一下实例分割(具体可参考著名的MaskRCNN模型),实例分割常常与目标检测系统相互结合,用于检测和分割场景中同一对象的多个实例。
在过去的几年里,深度学习方法在几个领域的表现都超过了以往的机器学习技术,其中最突出的一个例子就是计算机视觉。这篇综述文章简要介绍了计算机视觉问题中最重要的一些深度学习方案,即卷积神经网络、深度玻尔兹曼机和深...