最新 最热

使用拓扑数据分析理解卷积神经网络模型的工作过程

神经网络在各种数据方面处理上已经取得了很大的成功,包括图像、文本、时间序列等。然而,学术界或工业界都面临的一个问题是,不能以任何细节来理解其工作的过程,只能通过实验来检测其效果,而无法做出合理的解释。相关问题是...

2019-08-16
0

入门项目数字手写体识别:使用Keras完成CNN模型搭建

对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一。在面部识别、自动驾驶、物体检测等领域,CNN被广泛使用,并都取得了最优性能。对于绝大多数深度学习新手而言,数字手写体识别任务可能是第一个上手的项...

2019-08-16
0

当推荐系统邂逅深度学习

推荐系统之于用户的角色,有时更像是无微不至的男朋友,你口渴时递给你符合口味的饮料,你饥饿时还你以常吃的披萨,你无聊时帮你推荐有趣的音乐亦或带你欣赏感兴趣的电影。...

2019-08-16
0

机器学习研究人员需要了解的8个神经网络架构(上)

在这篇文章中,我想与大家分享8个神经网络体系结构,我相信任何一个机器学习的研究人员都应该熟悉这一过程来促进他们的工作。

2019-08-16
0

Tensorflow入门1-CNN网络及MNIST例子讲解

人工智能自从阿尔法狗大败李世石后就异常火爆,最近工作中需要探索AI在移动端的应用,趁着这个计划入门下深度学习吧。

2019-08-16
0

深度学习精要之CapsuleNets理论与实践(附Python代码)

神经网络于上世纪50年代提出,直到最近十年里才得以发展迅速,正改变着我们世界的方方面面。从图像分类到自然语言处理,研究人员正在对不同领域建立深层神经网络模型并取得相关的突破性成果。但是随着深度学习的进一步发展...

2019-08-16
0

深度学习领域引用量前20篇论文简介

深度学习是机器学习和统计学交叉领域的一个子集,在过去的几年里得到快速的发展。强大的开源工具以及大数据爆发使其取得令人惊讶的突破进展。本文根据微软学术(academic.microsoft.com)的引用量作为评价指标,从中选取了20...

2019-08-16
0

资源|卷积神经网络使用技巧

好久没有分享学习资源了,今天给各位小伙伴分享一个关于如何使用卷积神经网络的学习资料。随着计算机视觉技术的发展,卷积神经网络距离我们已经不再遥远和神秘,在日常的学习和研究中越来越多的使用卷积神经网络来解决问题...

2019-08-16
0

快速入门PyTorch(3)--训练一个图片分类器和多 GPUs 训练

这是快速入门 PyTorch 的第三篇教程也是最后一篇教程,这次将会在 CIFAR10 数据集上简单训练一个图片分类器,将会简单实现一个分类器从网络定义、数据处理和加载到训练网络模型,最后测试模型性能的流程。以及如何使用多 G...

2019-08-16
0

常用机器学习算法汇总比较(完)

常用机器学习算法汇总比较的最后一篇,介绍提升(Boosting)算法、GBDT、优化算法和卷积神经网络的基本原理、优缺点。

2019-08-16
0