在用全连接做手写数字识别的时候,准确率有97%了,但是还是会出现一些测试图片没有预测对,出来更好的去优化参数,现在就直接改进神经网络的模型,用cnn去训练数据。...
近期垃圾分类成为了一个热门话题,原来直接一次性扔掉的垃圾,现在都需要分门别类进行投放。从今年7月1日起,新的《上海市生活垃圾管理条例》正式开始施行,号称史上最严的垃圾分类就要来了。我们以后在扔垃圾前都要先将垃圾...
计算机视觉的底层,图像处理,根本上讲是基于一定假设条件下的信号重建。这个重建不是3-D结构重建,是指恢复信号的原始信息,比如去噪声。这本身是一个逆问题,所以没有约束或者假设条件是无解的,比如去噪最常见的假设就是高斯...
卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:
而这也使得人工智能芯片领域近几年来逐渐成了群雄逐鹿的重要“战场”,包括英特尔、谷歌、华为等在国内外各大科技巨头,及AI初创芯片公司不断涌入。...
我们提出YOLO,一种新的目标检测方法。以前的目标检测是用分类的方式来检测,而我们将目标检测定义成回归问题,从空间上分隔出边界框和相关的类别概率。这是一个简洁的神经网络,看一次全图后,就能直接从全图预测目标的边界框...
从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量。我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向。...
本文要介绍的是一份长约 80 页的学习笔记,旨在总结机器学习的一系列基本概念(如梯度下降、反向传播等),不同的机器学习算法和流行模型,以及一些作者在实践中学到的技巧和经验。...
ZFNet出自论文《 Visualizing and Understanding Convolutional Networks》,作者Matthew D. Zeiler和Rob Fergus——显然ZFNet是以两位作者名字的首字母命名的,截止20190911,论文引用量为4207。ZFNet通常被认为是ILSVRC ...
在普通神经网络中,每个神经元都和临近层的所有神经元相连接,这称为全连接(full-connected).