最新 最热

神经架构搜索研究指南,只看这一篇就够了

导读: 从训练到用不同的参数做实验,设计神经网络的过程是劳力密集型的,非常具有挑战性,而且常常很麻烦。但是想象一下,如果能够将这个过程实现自动化呢?将这种想象转变为现实,就是本指南的核心内容。我们将探索一系列的研究...

2019-10-30
0

CNN卷积特征的可视化

卷积神经网络最早是为了解决图像识别的问题,现在也用在时间序列数据和文本数据处理当中,卷积神经网络对于数据特征的提取不用额外进行,在对网络的训练的过程当中,网络会自动提取主要的特征....

2019-10-29
0

基于CNN目标检测方法(RCNN,Fast-RCNN,Faster-RCNN,Mask-RCNN,YOLO,SSD)行人检测

对于一张图片,R-CNN基于selective search方法大约生成2000个候选区域,然后每个候选区域被resize成固定大小(227×227)并送入一个CNN模型中,使用AlexNet来提取图像特征,最后得到一个4096维的特征向量。然后这个特征向量被送...

2019-10-29
0

自制人脸数据,利用keras库训练人脸识别模型

机器学习最本质的地方就是基于海量数据统计的学习,说白了,机器学习其实就是在模拟人类儿童的学习行为。举一个简单的例子,成年人并没有主动教孩子学习语言,但随着孩子慢慢长大,自然而然就学会了说话。那么孩子们是怎么学会...

2019-10-29
1

模型调参:分步骤的提升模型的精度

当我们在处理图像识别或者图像分类或者其他机器学习任务的时候,我们总是迷茫于做出哪些改进能够提升模型的性能(识别率、分类准确率)。。。或者说我们在漫长而苦恼的调参过程中到底调的是哪些参数。。。所以,我花了一部分...

2019-10-29
0

深度学习面试题及参考答案

首先权值共享就是滤波器共享,滤波器的参数是固定的,即是用相同的滤波器去扫一遍图像,提取一次特征特征,得到feature map。在卷积网络中,学好了一个滤波器,就相当于掌握了一种特征,这个滤波器在图像中滑动,进行特征提取,然后所...

2019-10-28
0

卷积神经网络的卷积核大小、个数,卷积层数如何确定呢?

卷积神经网络的卷积核大小、卷积层数、每层map个数都是如何确定下来的呢?看到有些答案是刚开始随机初始化卷积核大小,卷积层数和map个数是根据经验来设定的,但这个里面应该是有深层次原因吧,比如下面的手写字卷积神经网络...

2019-10-28
0

如何配置神经网络中的层数和节点数

人工神经网络有两个重要的超参数,用于控制网络的体系结构或拓扑:层数和每个隐藏层中的节点数。配置网络时,必须指定这些参数的值。

2019-10-28
0

基于卷积神经网络的图像情感分析模型,Python实现

图片情感分析,重点是颜色特征的提取,将每一个像素点的颜色特征转换成一个值,最终效果是把一个图片转换成一个二维矩阵,矩阵中每一个值都代表该像素点的颜色特征。概括来说就是将每个像素点的RGB值转换为HSV,然后对HSV三个...

2019-10-28
0

深度学习、图像分类入门,从VGG16卷积神经网络开始

刚开始接触深度学习、卷积神经网络的时候非常懵逼,不知道从何入手,我觉得应该有一个进阶的过程,也就是说,理应有一些基本概念作为奠基石,让你有底气去完全理解一个庞大的卷积神经网络:...

2019-10-28
0