机器学习定义机器学习(Machine Learning)本质上就是让计算机自己在数据中学习规律,并根据所得到的规律对未来数据进行预测。机器学习包括如聚类、分类、决策树、贝叶斯、神经网络、深度学习(Deep Learning)等算法。机器学...
今日头条召开了一场分享交流会。资深算法架构师、中国科学技术大学计算机博士曹欢欢,在今日头条总部带来了题为《让算法公开透明》的分享,消除社会各界对算法的一些误解,同时接受意见和建议。...
KNN最邻近规则,主要应用领域是对未知事物的识别,即推断未知事物属于哪一类,推断思想是,基于欧几里得定理,推断未知事物的特征和哪一类已知事物的的特征最接近;...
高速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下。排序n个项目要Ο(nlogn)次比較。
大数据文摘转载自海豚数据科学实验室机器学习(Machine Learning)本质上就是让计算机自己在数据中学习规律,并根据所得到的规律对未来数据进行预测。机器学习包括如聚类、分类、决策树、贝叶斯、神经网络、深度学习(Deep L...
来源:海豚数据科学实验室本文约2500字,建议阅读5分钟本文介绍了机器学习的常见知识。机器学习定义机器学习(Machine Learning)本质上就是让计算机自己在数据中学习规律,并根据所得到的规律对未来数据进行预测。机器学习包...
此前的博客中,我们已经介绍了几个分类算法。k 近邻算法决策树的构建算法 — ID3 与 C4.5 算法朴素贝叶斯算法的推导与实践
文本分类大致有两种方法:一种是基于训练集的文本分类方法;另一种是基于分类词表的文本分类方法。两种方法出自不同角度的研究者,训练集法更多的来自计算机或人工智能研究领域,而分类表法则更多地来自突出情报领域。本文主...
深度学习取得了很大的成功,但是在可解释,可信任等方面还很不足。模型包含对自我推理结果的置信度很重要,模型需要对自我不确定性推理结果进行告知。如果模型可以知道自己不知道,那模型就是有了最基本的意识,模型可以给出推...
数据挖掘是通过对大量数据的清理及处理以发现信息,并应用于分类,推荐系统等方面的过程。