仓库地址:https://github.com/DA-southampton/Tech_Aarticle/edit/master/README.md
本文为《机器学习实战:基于Scikit-Learn和TensorFlow》的读书笔记。 中文翻译参考
❃随着信息技术的高速发展,数据库应用的规模、范围和深度不断扩大,网络环境成为主流等等。产生“数据丰富而信息贫乏”现象。
可以分为监督学习(Supervised Learning),无监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)四大类。
数据挖掘和数据分析都是从数据中提取一些有价值的信息,二者有很多联系,但是二者的侧重点和实现手法有所区分。 数据挖掘和数据分析的不同之处: 1、在应用工具上,数据挖掘一般要通过自己的编程来实现需要掌握编程语言;而数...
近年来人工智能和大数据的迅速发展正在深刻改变着这个世界和我们的生活方式。人工智能的核心是机器学习(Machine Learning) 算法,自 2006 年以来,在机器学习领域,以深度学习(Deep Lerning) 为代表的机器学习算法取得了突...
前面几讲我们基于数据分析师需要掌握的基本技能,从SQL出发,学习了统计学的基本知识,在系统层面基本讲完了数据分析师需要具备的能力。下面几讲,我们会围绕数据挖掘工程师需具备的知识体系展开,今天会着重介绍机器学习中模...
背景:随着数据量的不断积累,海量时序信息的处理需求日益凸显。作为时间序列数据分析中的重要任务之一,时间序列分类应用广泛且多样。时间序列分类旨在赋予序列某个离散标记。传统特征提取算法使用时间序列中的统计信息作...
KNN(K-Nearest Neighbor)是一个分类算法,属于有监督学习。 KNN思想的核心在于:近朱者赤,近墨者黑,根据新样本的k个最近邻居来判定其类别。
协同过滤和矩阵分解存在的劣势就是仅利用了用户与物品相互行为信息进行推荐, 忽视了用户自身特征, 物品自身特征以及上下文信息等,导致生成的结果往往会比较片面。而这次介绍的这个模型是2014年由Facebook提出的GBDT+LR...