KNN不是“夸你呢”的缩写,全称K-NEAREST NEIGHBOR,取首字母缩写为KNN,中译一般叫“K最近邻算法”,是一种常用的机器学习算法。
使用工具:python、pandas、numpy、matplotlib、seaborn、sklearn库
Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法。即将弱分类器组装成强分类器的方法。...
举一个简单易懂的例子:将电子邮件分类为“ 垃圾邮件 ”或“ 非垃圾邮件”(二分类的典型特征“非此即彼”,关于二分类,后文会涉及)。
https://www.cnblogs.com/chenqionghe/p/12301905.html
金属有机骨架(MOFs)由于其高度可调节的结构特性,在吸附、分离、传感和催化等领域具有极大的应用潜力。然而,MOFs必须能在水蒸气中保持稳定,才能在工业中得到应用。目前,预测MOFs的水稳定性是十分困难的:一是因为MOFs合成的...
为了消除数据特征之间的量纲影响,我们需要对特征进行归一化处理,使得不同指标之间具有可比性。例如,分析一个人的身高和体重对健康的影响,如果使用米(m)和千克(kg)作为单位,那么身高特征会在1.6~1.8m的数值范围内,体重特征会在50...
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说面向高维和不平衡数据分类的集成学习研究论文研读笔记「建议收藏」,希望能够帮助大家进步!!!...
将多个分类器的预测结果进行组合得到最终决策,来获得更好的分类及回归性能。单一分类器只适合于某种特定类型的数据,很难保证得到最佳分类模型,如果对不同算法的预测结果取平均,相比一个分类器,可能会获得更好的分类模型。...
我花了半个多月将推荐系统传统算法分别进行了总结归纳,应该时目前全网最全的版本了。希望对大家了解推荐系统传统算法有所帮助。