决策树是一种自上而下,对样本数据进行树形分类的过程,由节点和有向边组成。节点分为内部节点和叶节点,其中每个内部节点表示一个特征或属性,叶节点表示类别。从顶部节点开始,所有样本聚在一起,经过根节点的划分,样本被分到不...
2、使用基于决策树的combination算法,如bagging算法,randomforest算法,可以解决过拟合的问题。
红色的是牛顿法的迭代路径,绿色的是梯度下降法的迭代路径.牛顿法起始点不能离极小点太远,否则很可能不会拟合.
GBDT相关知识模块:前向分布算法,负梯度拟合,损失函数,回归,二分类,多分类,正则化。
对于XGBoost算法原理看陈天奇的PPT和一份算法实战指导文档就够了(文末附网盘链接)。
决策树分为两大类:分类树和回归树,分类树用于分类标签值,回归树用于预测连续值,常用算法有ID3、C4.5、CART等。
1,误差:误差由偏差(bias)、方差(variance)和噪声(noise)组成;
对于训练集数据,通过训练若干个个体学习器,通过一定的结合策略,就可以最终形成一个强学习器,以达到博采众长的目的。
最近学习了一段时间的决策树算法,但是感觉并没有达到自己预期的想法,所以这几天参考了一些决策树方面的资料,来将自己的学习的过程的笔记记录在这里,来加深理解和请教别人指出错误。...
最近总结树模型,尝试将主流 Boosting 实现方式做一个分析汇总,文中部分内容借鉴了知乎答案,已于参考链接中标识。