首先来说一下集成学习。集成学习在学术界和工业界都有很高的热度,例如Kaggle竞赛中神挡杀神佛挡杀佛的XGBoost就是一个典型的例子。那么什么是集成学习?最通俗易懂的理解就是:"三个臭皮匠,顶个诸葛亮"。把"臭皮匠"组合起...
深度学习和机器学习已经变得无处不在,那它们之间到底有什么区别呢?本文我们为大家总结了深度学习VS机器学习的六大本质区别。
本教程介绍了用于分类的决策树,即分类树,包括分类树的结构,分类树如何进行预测,使用scikit-learn构造分类树,以及超参数的调整。
决策树是一个有监督分类模型,本质是选择一个最大信息增益的特征值进行输的分割,直到达到结束条件或叶子节点纯度达到阈值。下图是决策树的一个示例图:...
描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。...
这就是所谓的过拟合,当深度越深,分的次数越多,训练集的错误率还ok,但是在测试集就完了。
机器学习是一类算法的总称,这些算法企图从大量历史数据中挖掘出其中隐含的规律,并用于预测或者分类,更具体的说,机器学习可以看作是一个函数,输入是样本数据,输出是期望的结果,只是这个函数过于复杂,以至于不太方便形式化表达...
机器学习是如今人工智能时代背景下一个重要的领域,它应用广泛,如推荐系统,文本分析,图像识别,语言翻译等等。要想学通这个大的领域不是一件容易的事情,所以我打算集大家之长,开通一个“Python快速实战机器学习”系列,用Python...
在建树步骤中,首先选择最有解释力度的变量,接着对每个变量选择最优的分割点进行剪树。