得到的信息:该数据共有1313条乘客信息,并且有些特征数据是完整的(如pclass、name),有些则是缺失的;有些是数值类型的,有些则是字符串。
前面我们已经通过数学公式验证过,将众多“好而不同”的弱学习器组合起来可以提升模型的准确性。并且根据个体学习器之间是否存在强依赖关系,我们将集成学习分为boosting和bagging两大类(强依赖性体现在弱学习器的抽样方...
XGBoost在机器学习领域可谓风光无限,作为从学术界来的模范生,帮助工业界解决了许多实际问题,真可谓:
决策树仍然是监督学习方法,其基本思路跟我们人做一些决策的思路类似:可能要下雨,那就带伞;可能要停水,那就提前备水……
CART算法全称是Classification and regression tree,也就是分类回归树的意思。和之前介绍的ID3和C4.5一样,CART算法同样是决策树模型的一种经典的实现。决策树这个模型一共有三种实现方式,前面我们已经介绍了ID3和C4.5两...
由于本文是基于面试整理,因此不会过多的关注公式和推导,如果希望详细了解算法内容,敬请期待后文。
首先,在了解树模型之前,自然想到树模型和线性模型有什么区别呢?其中最重要的是,树形模型是一个一个特征进行处理,之前线性模型是所有特征给予权重相加得到一个新的值。决策树与逻辑回归的分类区别也在于此,逻辑回归是将所有...
根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体。
上一篇文章当中介绍了一种最简单构造决策树的方法——ID3算法,也就是每次选择一个特征进行拆分数据。这个特征有多少个取值那么就划分出多少个分叉,整个建树的过程非常简单。如果错过了上篇文章的同学可以从下方传送门...
机器学习中,有一个称为“ No Free Lunch ”的定理。简单来说,与监督学习特别相关的这个定理,它指出没有万能算法,就是用一个算法能很好地解决每个问题。...