在机器学习中,模型的性能往往受到模型的超参数、数据的质量、特征选择等因素影响。其中,模型的超参数调整是模型优化中最重要的环节之一。超参数(Hyperparameters)在机器学习算法中需要人为设定,它们不能直接从训练数据中...
对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》...
该研究目标是创建一个与用户意图更符合的小型语言模型。通过应用蒸馏监督微调(distilled supervised fine-tuning, dSFT)和蒸馏直接偏好优化(distilled direct preference optimization, dDPO)以及利用AI反馈(AI Feed...
到现在,我相信大家理论已经掌握了,轮子也造好了。但有的人是不是总感觉还差点什么?没错,还缺了实战经验。对于AB实验平台完善的公司 ,这个经验不难获得,但有的同学或多或少总有些原因无法接触到AB实验。所以本文就告诉大家,...
大型语言模型(LLM)具有前所未有的语言理解和生成能力,但是解锁这些高级的能力需要巨大的模型规模和训练计算量。在这种背景下,尤其是当我们关注扩展至 OpenAI 提出的超级智能 (Super Intelligence) 模型规模时,低精度训练...
标题:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
最小生成树( Minimum Spanning Tree , MST )是图论中的一个重要问题,涉及到在一个加权连通图中找到一棵包含所有节点且边的权重之和最小的树。最小生成树问题在许多实际应用中都有重要作用,例如通信网络设计、电路板布线、...
搜索到某个效果很好的视频去燥的算法,感觉效果比较牛逼,就是速度比较慢,如果能做到实时,那还是很有实用价值的。于是盲目的选择了这个课题,遇到的第一个函数就是角点检测,大概六七年用过C#实现过Harris角点以及SUSAN角点。...
字符串常量池是 Java 中的一种特殊的内存区域,用于存储字符串常量。它是在编译阶段就确定并存储的,是一种优化机制,可以减少内存的占用和提高程序的执行效率。...
在安全关键的实时应用中部署深度神经模型具有挑战性,特别是在资源有限的设备上,如自动驾驶汽车或虚拟/增强现实头戴式设备。这主要是由于巨大的计算复杂性和庞大的内存/存储需求。一种有效的策略是通过知识蒸馏来训练轻...