阅读(2961) (0)

PyTorch 可选: 数据并行处理

2020-09-05 16:56:59 更新
原文: https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
作者: Sung Kim Jenny Kang
译者: bat67
校验者: FontTian 片刻 yearing1017

在这个教程里,我们将学习如何使用数据并行(DataParallel)来使用多GPU。

PyTorch非常容易的就可以使用GPU,可以用如下方式把一个模型放到GPU上:

device = torch.device("cuda: 0")
model.to(device)

然后可以复制所有的张量到GPU上:

mytensor = my_tensor.to(device)

请注意,调用my_tensor.to(device)返回一个GPU上的my_tensor副本,而不是重写my_tensor。你需要把它赋值给一个新的张量并在GPU上使用这个张量。

在多GPU上执行正向和反向传播是自然而然的事。然而,PyTorch 默认将只是用一个GPU。你可以使用DataParallel让模型并行运行来轻易的在多个GPU上运行你的操作。

model = nn.DataParallel(model)

这是这篇教程背后的核心,我们接下来将更详细的介绍它。

导入和参数

导入 PyTorch 模块和定义参数。

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader


## Parameters 和 DataLoaders
input_size = 5
output_size = 2


batch_size = 30
data_size = 100

设备( Device ):

device = torch.device("cuda: 0" if torch.cuda.is_available() else "cpu")

虚拟数据集

要制作一个虚拟(随机)数据集,你只需实现__getitem__

class RandomDataset(Dataset):


    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)


    def __getitem__(self, index):
        return self.data[index]


    def __len__(self):
        return self.len


rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
                         batch_size=batch_size, shuffle=True)

简单模型

作为演示,我们的模型只接受一个输入,执行一个线性操作,然后得到结果。然而,你能在任何模型(CNN,RNN,Capsule Net等)上使用DataParallel

我们在模型内部放置了一条打印语句来检测输入和输出向量的大小。请注意批等级为0时打印的内容。

class Model(nn.Module):
    # Our model


    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)


    def forward(self, input):
        output = self.fc(input)
        print("\tIn Model: input size", input.size(),
              "output size", output.size())


        return output

创建一个模型和数据并行

这是本教程的核心部分。首先,我们需要创建一个模型实例和检测我们是否有多个GPU。如果我们有多个GPU,我们使用nn.DataParallel来包装我们的模型。然后通过model.to(device)把模型放到GPU上。

model = Model(input_size, output_size)
if torch.cuda.device_count() > 1: 
  print("Let's use", torch.cuda.device_count(), "GPUs!")
  # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
  model = nn.DataParallel(model)


model.to(device)

输出:

Let's use 2 GPUs!

运行模型

现在我们可以看输入和输出张量的大小。

for data in rand_loader: 
    input = data.to(device)
    output = model(input)
    print("Outside: input size", input.size(),
          "output_size", output.size())

输出:

In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
        In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

结果

如果没有GPU或只有1个GPU,当我们对30个输入和输出进行批处理时,我们和期望的一样得到30个输入和30个输出,但是若有多个GPU,会得到如下的结果。

2个GPU

若有2个GPU,将看到:

Let's use 2 GPUs!
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

3个GPU

若有3个GPU,将看到:

Let's use 3 GPUs!
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

8个GPU

若有8个GPU,将看到:

Let's use 8 GPUs!
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

总结

DataParallel自动的划分数据,并将作业顺序发送到多个GPU上的多个模型。DataParallel会在每个模型完成作业后,收集与合并结果然后返回给你。

更多信息,请参考: https://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html