ID3 算法
ID3 算法
- ID3 算法最早是由罗斯昆 (J.Ross Quinlan) 于1975年提出的一种决策树构建算法,算法的核心是“信息熵”,期望信息越小,信息熵越大,样本纯度越低。。
- ID3 算法是以信息论为基础,以信息增益为衡量标准,从而实现对数据的归纳分类
- ID3 算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。
ID3 算法步骤:
- 1.初始化特征集合和数据集合
- 2.计算数据集合信息和所有特征的条件熵,选择信息增益最大的特征作为当前决策节点
- 3.更新数据集合和特征集合(删除上一步使用的特征,并按照特征值来划分不同分支的数据集合)
- 4.重复 2,3 两步,若子集值包含单一特征,则为分支叶子节点。
信息熵
K是类别,D是数据集,
是类别K下的数据集
条件熵
A是特征,i是特征取值
信息增益(ID3)
特征选择的目的在于选取对训练数据能够分类的特征,关键是其准则
样本集合
对特征
的信息增益(ID3)
其中,
是数据集
的熵,
是数据集
的熵,
是数据集
对特征
的条件熵。
是
中特征
取第
个值的样本子集,
是
中属于第
类的样本子集。
是特征
取 值的个数,
是类的个数。
ID3 算法缺点
ID3 没有剪枝策略,容易过拟合 信息增益准则对可取值数目较多的特征有所偏好,类似“编号”的特征其信息增益接近于 1 只能用于处理离散分布的特征没有考虑缺失值