课程学习自 知乎知学堂 https://www.zhihu.com/education/learning
如果侵权,请联系删除,感谢!
文章目录
- 1. RAG
- 2. 构建流程
- 2.1 文档加载与切分
- 2.2 传统检索引擎
- 2.3 LLM接口封装
- 2.4 构建prompt
- 3. 向量检索
- 4. 向量数据库
- 5. 基于向量检索的RAG
- 6. 进阶知识
- 6.1 文本分割粒度
- 6.2 检索后再排序
- 6.3 测试
1. RAG
RAG(Retrieval Augmented Generation),通过检索获取一些信息,传给大模型,提高回复的准确性。
一般流程:
- 离线步骤:文档加载切片 -> 向量化 -> 存入向量数据库
- 在线步骤:用户提问 -> 向量化 ->检索 -> 组装提示词 -> LLM -> 输出回复
2. 构建流程
相关环境
代码语言:javascript复制pip install pdfminer.six # pdf解析
pip install openai -U # openai-1.3.7
2.1 文档加载与切分
代码语言:javascript复制import pathlib
def extract_text_from_pdf(filename, page_numbers=None, min_line_length=1):
'''从 PDF 文件中(按指定页码)提取文字'''
paragraphs = []
buffer = ''
full_text = ''
# 提取全部文本
for i, page_layout in enumerate(extract_pages(filename)):
# 如果指定了页码范围,跳过范围外的页
if page_numbers is not None and i not in page_numbers:
continue
for element in page_layout:
if isinstance(element, LTTextContainer):
full_text = element.get_text() 'n'
# 按空行分隔,将文本重新组织成段落
lines = full_text.split('n')
for text in lines:
if len(text) >= min_line_length:
buffer = (' ' text) if not text.endswith('-') else text.strip('-')
elif buffer:
paragraphs.append(buffer)
buffer = ''
if buffer:
paragraphs.append(buffer)
return paragraphs
代码语言:javascript复制paragraphs = extract_text_from_pdf(pathlib.Path(__file__).parent.absolute() / "llama2.pdf", min_line_length=10)
2.2 传统检索引擎
- 安装 ElasticSearch
pip install elasticsearch8
pip install nltk
代码语言:javascript复制from elasticsearch8 import Elasticsearch, helpers
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import nltk
import re
import warnings
warnings.simplefilter("ignore") #屏蔽 ES 的一些Warnings
nltk.download('punkt') # 英文切词、词根、切句等方法
nltk.download('stopwords') # 英文停用词库
def to_keywords(input_string):
'''(英文)文本只保留关键字'''
# 使用正则表达式替换所有非字母数字的字符为空格
no_symbols = re.sub(r'[^a-zA-Z0-9s]', ' ', input_string)
word_tokens = word_tokenize(no_symbols)
stop_words = set(stopwords.words('english'))
ps = PorterStemmer()
# 去停用词,取词根
filtered_sentence = [ps.stem(w) for w in word_tokens if not w.lower() in stop_words]
return ' '.join(filtered_sentence)
- 切分文档存入 Es
# 1. 创建Elasticsearch连接
es = Elasticsearch(
hosts=['http://localhost:9200'], # 服务地址与端口
# http_auth=("elastic", "*****"), # 用户名,密码
)
# 2. 定义索引名称
index_name = "string_index"
# 3. 如果索引已存在,删除它(仅供演示,实际应用时不需要这步)
if es.indices.exists(index=index_name):
es.indices.delete(index=index_name)
# 4. 创建索引
es.indices.create(index=index_name)
# 5. 灌库数据
actions = [
{
"_index": index_name,
"_source": {
"keywords": to_keywords(para),
"text": para
}
}
for para in paragraphs
]
# 6. 批量存储Es
helpers.bulk(es, actions)
- 关键字检索
def search(es, index_name, query_string, top_n=3):
# ES 的查询语言
search_query = {
"match": {
"keywords": to_keywords(query_string)
}
}
res = es.search(index=index_name, query=search_query, size=top_n)
return [hit["_source"]["text"] for hit in res["hits"]["hits"]]
results = search(es, "string_index", "how many parameters does llama 2 have?", 2)
for r in results:
print(r "n")
搜索llama2有多少参数
,找到了相关的文档,输出:
Llama 2 comes in a range of parameter sizes—7B, 13B,
and 70B—as well as pretrained and fine-tuned variations.
1. Llama 2, an updated version of Llama 1, trained on a new mix of publicly available data.
We also increased the size of the pretraining corpus by 40%, doubled the context length of the model, and adopted grouped-query attention (Ainslie et al., 2023).
We are releasing variants of Llama 2 with 7B, 13B, and 70B parameters. We have also trained 34B variants, which we report on in this paper but are not releasing.§
2.3 LLM接口封装
代码语言:javascript复制from openai import OpenAI
import os
# 加载环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv('../utils/.env')) # 读取本地 .env 文件,里面定义了 OPENAI_API_KEY
client = OpenAI(
api_key=os.getenv("OPENAI_API_KEY"),
base_url=os.getenv("OPENAI_API_BASE")
)
def get_completion(prompt, model="gpt-3.5-turbo"):
'''封装 openai 接口'''
messages = [{"role": "user", "content": prompt}]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0, # 模型输出的随机性,0 表示随机性最小
)
return response.choices[0].message.content
2.4 构建prompt
代码语言:javascript复制def build_prompt(prompt_template, **kwargs):
'''将 Prompt 模板赋值'''
prompt = prompt_template
for k, v in kwargs.items():
if isinstance(v,str):
val = v
elif isinstance(v, list) and all(isinstance(elem, str) for elem in v):
val = 'n'.join(v)
else:
val = str(v)
prompt = prompt.replace(f"__{k.upper()}__",val)
return prompt
代码语言:javascript复制prompt_template = """
你是一个问答机器人。
你的任务是根据下述给定的已知信息回答用户问题。
确保你的回复完全依据下述已知信息。不要编造答案。
如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。
已知信息:
__INFO__
用户问:
__QUERY__
请用中文回答用户问题。
"""
user_query = "how many parameters does llama 2 have?"
# 1. 检索
search_results = search(es, "string_index", user_query, 2)
# 2. 构建 Prompt
prompt = build_prompt(prompt_template, info=search_results, query=user_query)
print("===Prompt===")
print(prompt)
# 3. 调用 LLM
response = get_completion(prompt)
print("===回复===")
print(response)
提示词如下:
GPT输出:
代码语言:javascript复制Llama 2有7B、13B和70B三种参数大小的变体。
传统的关键字检索,对同一个语义的不同描述,可能检索不到结果
3. 向量检索
- 把一个词句映射到 n 维空间的一个向量
- 构建句对(相似和不相似),训练双塔式模型 https://www.sbert.net
- 向量相似度:
余弦距离
dot(a, b)/(norm(a)*norm(b))
欧式距离norm(np.asarray(a)-np.asarray(b))
向量化
代码语言:javascript复制def get_embeddings(texts, model="text-embedding-ada-002"):
'''封装 OpenAI 的 Embedding 模型接口'''
data = client.embeddings.create(input = texts, model=model).data
return [x.embedding for x in data]
test_query = ["测试文本"]
vec = get_embeddings(test_query)
print(vec[0][:10]) # 1536 维向量 [-0.0072620222344994545, -0.006227712146937847, -0.010517913848161697, 0.001511403825134039, -0.010678159072995186, 0.029252037405967712, -0.019783001393079758, 0.0053937085904181, -0.017029697075486183, -0.01215678546577692]
4. 向量数据库
代码语言:javascript复制# pip install chromadb
import chromadb
from chromadb.config import Settings
class MyVectorDBConnector:
def __init__(self, collection_name, embedding_fn):
chroma_client = chromadb.Client(Settings(allow_reset=True))
# 为了演示,实际不需要每次 reset()
chroma_client.reset()
# 创建一个 collection
self.collection = chroma_client.get_or_create_collection(name="demo")
self.embedding_fn = embedding_fn
def add_documents(self, documents, metadata={}):
'''向 collection 中添加文档与向量'''
self.collection.add(
embeddings=self.embedding_fn(documents), # 每个文档的向量
documents=documents, # 文档的原文
ids=[f"id{i}" for i in range(len(documents))] # 每个文档的 id
)
def search(self, query, top_n):
'''检索向量数据库'''
results = self.collection.query(
query_embeddings=self.embedding_fn([query]),
n_results=top_n
)
return results
paragraphs = extract_text_from_pdf(pathlib.Path(__file__).parent.absolute() / "llama2.pdf", page_numbers=[2, 3], min_line_length=10)
# 创建一个向量数据库对象
vector_db = MyVectorDBConnector("demo", get_embeddings)
# 向向量数据库中添加文档
vector_db.add_documents(paragraphs)
user_query = "Llama 2有多少参数"
results = vector_db.search(user_query, 2) # 查询最相似的2个
for para in results['documents'][0]:
print(para "n")
主流向量数据库
- FAISS: Meta开源的向量检索引擎 https://github.com/facebookresearch/faiss
- Pinecone: 商用向量数据库,只有云服务 https://www.pinecone.io/
- Milvus: 开源向量数据库,同时有云服务 https://milvus.io/ (选项全都是Y)
- Weaviate: 开源向量数据库,同时有云服务 https://weaviate.io/
- Qdrant: 开源向量数据库,同时有云服务 https://qdrant.tech/
- PGVector: Postgres的开源向量检索引擎 https://github.com/pgvector/pgvector
- RediSearch: Redis的开源向量检索引擎 https://github.com/RediSearch/RediSearch
- ElasticSearch 也支持向量检索 https://www.elastic.co/enterprise-search/vector-search
5. 基于向量检索的RAG
代码语言:javascript复制class RAG_Bot:
def __init__(self, vector_db, llm_api, n_results=2):
self.vector_db = vector_db
self.llm_api = llm_api
self.n_results = n_results
def chat(self, user_query):
# 1. 检索
search_results = self.vector_db.search(user_query,self.n_results)
# 2. 构建 Prompt
prompt = build_prompt(prompt_template, info=search_results['documents'][0], query=user_query)
# 3. 调用 LLM
response = self.llm_api(prompt)
return response
# 创建一个RAG机器人
bot = RAG_Bot(
vector_db,
llm_api=get_completion
)
user_query="llama 2有多少参数?"
response = bot.chat(user_query)
print(response) # Llama 2有7B、13B和70B参数的变体。
可以替换其他的 embedding、LLM
代码语言:javascript复制# pip install sentence_transformers
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
query_vec = model.encode(query, normalize_embeddings=True)
不是每个 Embedding 模型都对 余弦距离
和 欧氏距离
同时有效
哪种相似度计算有效要阅读模型的说明(通常都支持余弦距离计算)
6. 进阶知识
6.1 文本分割粒度
- 太大,检索不精准,太小,信息不全
- 问题的答案跨越两个片段
改进方法:
- 按一定粒度,部分重叠式的切割文本,使上下文更完整
6.2 检索后再排序
最合适的答案,有时候不一定排在检索结果的最前面
- 检索的时候,多召回一些文本
- 再用排序模型对 query 和 召回的 doc 进行打分排序
user_query="how safe is llama 2"
search_results = semantic_search(user_query,5) # 召回文档
model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
scores = model.predict([(user_query, doc) for doc in search_results['documents'][0]])
# 按得分排序
sorted_list = sorted(zip(scores,search_results['documents'][0]), key=lambda x: x[0], reverse=True)
for score, doc in sorted_list:
print(f"{score}t{doc}n")
6.3 测试
- 检查预处理,文档是否切分合理
- 问题检索,是否能召回正确答案文档
- 大模型根据包含正确答案的信息,能否正确回答