可观测平台-4.2: Cache/MQ/TQ 中间件告警管理

2023-12-14 17:19:09 浏览数 (1)

Redis 告警配置参考

针对Redis性能指标,分别提供Redis日志指标导出器的配置、Prometheus监控规则(YAML格式)、告警规则,以及一个适合的Grafana仪表板配置。

Redis 日志指标导出器

日志/指标导出器

  • Redis日志:可以通过Redis的日志文件来捕捉日志数据。这通常涉及到配置Redis,以将日志输出到一个文件中,然后使用类似Filebeat的工具来收集这些日志并发送到日志分析平台。
  • Redis指标:可以使用redis_exporter,这是一个为Prometheus设计的Redis指标导出器。它可以收集和导出Redis的性能指标,如命令统计、内存使用情况、CPU使用率等。

Redis服务 Prometheus 监控规则 (YAML)

监控规则

代码语言:yaml复制
groups:
- name: redis_metrics
  rules:
  - record: redis_commands_processed_total
    expr: rate(redis_commands_processed_total[5m])

  - record: redis_memory_usage_bytes
    expr: redis_memory_used_bytes

  - record: redis_cpu_usage_percentage
    expr: rate(redis_cpu_user_seconds_total[5m])   rate(redis_cpu_system_seconds_total[5m])

  - record: redis_net_input_bytes
    expr: rate(redis_net_input_bytes_total[5m])

  - record: redis_net_output_bytes
    expr: rate(redis_net_output_bytes_total[5m])

Redis服务 Prometheus 告警规则 (YAML)

告警规则

代码语言:yaml复制
groups:
- name: redis_alerts
  rules:
  - alert: HighMemoryUsage
    expr: redis_memory_usage_bytes > (redis_memory_max_bytes * 0.8)
    for: 5m
    labels:
      severity: critical
    annotations:
      summary: "High Memory Usage in Redis"
      description: "Redis server {{ $labels.instance }} is using more than 80% of its configured max memory."

  - alert: HighCommandRate
    expr: redis_commands_processed_total > 10000
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "High Command Rate on Redis"
      description: "Redis server {{ $labels.instance }} is processing more than 10000 commands per second."

Redis后端服务 Grafana 仪表板

对于Grafana仪表板,您可以在Grafana Dashboards网站上找到专门为Redis设计的仪表板。这些仪表板通常包括关键性能指标,如命令统计、吞吐量、延迟、内存使用、CPU使用率、网络带宽等。

一个典型的例子可能是“Redis Overview”仪表板,它提供了一个全面的视图,展示了Redis实例的主要性能指标。您可以通过导入仪表板ID或直接从网站下载JSON文件来添加这些仪表板到您的Grafana实例。

这些配置和仪表板是根据您的需求和环境可能需要调整和定制。

Kafka 告警配置参考

Kafka 日志指标导出器

对于 Kafka 日志指标导出器,您可以使用 Kafka 的内置 JMX 支持和 JMX Exporter 来捕获 Kafka 的性能指标。这需要启用 Kafka 的 JMX 功能,然后使用 JMX Exporter 导出这些指标并发送到 Prometheus。

Kafka 服务 Prometheus 监控规则 (YAML)

代码语言:yaml复制
groups:
- name: kafka_metrics
  rules:
  - record: kafka_messages_per_second
    expr: rate(kafka_server_brokertopicmetrics_messagesin_total{topic="your_topic"}[5m])

  - record: kafka_latency_seconds
    expr: kafka_server_brokertopicmetrics_totaltime_seconds{topic="your_topic"} / kafka_server_brokertopicmetrics_messagesin_total{topic="your_topic"}

  - record: kafka_queue_size
    expr: kafka_server_brokertopicmetrics_messagesin_total{topic="your_topic"} - kafka_server_brokertopicmetrics_messagesout_total{topic="your_topic"}

  - record: kafka_cpu_usage_percentage
    expr: 100 - avg by (instance)(irate(node_cpu_seconds_total{mode="idle"}[5m]))

  - record: kafka_memory_usage_bytes
    expr: node_memory_MemTotal_bytes - node_memory_MemFree_bytes

  - record: kafka_error_rate
    expr: rate(kafka_server_brokertopicmetrics_failedfetchrequests_total{topic="your_topic"}[5m]) / rate(kafka_server_brokertopicmetrics_requests_total{topic="your_topic"}[5m])

  - record: kafka_retry_count
    expr: sum(kafka_consumer_rebalance_total{topic="your_topic"})

  - record: kafka_client_connections
    expr: kafka_server_metadata_response_version{version="0.9.0.1"} / ignoring(version) count(kafka_server_metadata_response_version{version="0.9.0.1"})

  - record: kafka_client_connection_failures
    expr: sum(kafka_network_handlers_total{result="NetworkError"})

请注意,上述规则中的 "your_topic" 部分需要根据您的 Kafka 主题名称进行替换。

Kafka 服务 Prometheus 告警规则 (YAML)

代码语言:yaml复制
groups:
- name: kafka_alerts
  rules:
  - alert: HighLatency
    expr: kafka_latency_seconds > 0.5
    for: 5m
    labels:
      severity: critical
    annotations:
      summary: "High Latency in Kafka"
      description: "Kafka topic 'your_topic' is experiencing high latency."

  - alert: HighErrorRate
    expr: kafka_error_rate > 0.05
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "High Error Rate in Kafka"
      description: "Kafka topic 'your_topic' has a high error rate."

  - alert: HighQueueSize
    expr: kafka_queue_size > 1000
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "High Queue Size in Kafka"
      description: "Kafka topic 'your_topic' has a large queue size."

  - alert: ConnectionFailures
    expr: kafka_client_connection_failures > 10
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Kafka Connection Failures"
      description: "Kafka clients are experiencing connection failures."

同样,上述规则中的 "your_topic" 部分需要根据您的 Kafka 主题名称进行替换。

Kafka 后端服务 Grafana Dashboard

有许多可用于 Kafka 的 Grafana 仪表板,您可以根据需要选择一个适合您的仪表板。这些仪表板通常包括吞吐量、延迟、队列大小、CPU 使用率、内存使用量、错误率、重试次数、客户端连接数等关键性能指标的图表和可视化。您可以在 Grafana 的仪表板库或 Grafana 社区中查找这些仪表板,并按照需要进行定制和配置。

Celery 告警配置参考

任务队列监控项相关的 Celery 配置:

Celery 日志指标导出器

对于 Celery 日志指标导出器,您可以使用 Celery 的内置日志功能来捕获 Celery 任务的性能指标。这通常涉及配置 Celery 以将任务执行信息记录到日志文件中,然后使用类似于 Filebeat 的工具来收集这些日志并发送到日志分析平台。

Celery 服务 Prometheus 监控规则 (YAML)

以下是一些示例监控规则,可以用于监控 Celery 任务队列的性能:

代码语言:yaml复制
groups:
- name: celery_metrics
  rules:
  - record: celery_task_throughput
    expr: rate(celery_task_processed_total[5m])

  - record: celery_task_latency_seconds
    expr: celery_task_processing_time_seconds

  - record: celery_queue_length
    expr: celery_queue_size

  - record: celery_memory_usage_bytes
    expr: celery_memory_used_bytes

  - record: celery_cpu_usage_percentage
    expr: 100 - avg by (instance)(irate(node_cpu_seconds_total{mode="idle"}[5m]))

  - record: celery_task_success_rate
    expr: celery_task_successful_total / celery_task_processed_total

  - record: celery_task_failure_count
    expr: celery_task_failed_total

  - record: celery_task_retry_count
    expr: celery_task_retry_total

  - record: celery_queue_service_status
    expr: celery_service_status

  - record: celery_connection_errors
    expr: celery_connection_failures_total

  - record: celery_worker_count
    expr: celery_active_workers_total

  - record: celery_worker_load
    expr: celery_worker_load

Celery 服务 Prometheus 告警规则 (YAML)

以下是一些示例告警规则,可以用于监控 Celery 任务队列的健康和性能问题:

代码语言:yaml复制
groups:
- name: celery_alerts
  rules:
  - alert: HighTaskLatency
    expr: celery_task_latency_seconds > 10
    for: 5m
    labels:
      severity: critical
    annotations:
      summary: "High Task Latency in Celery"
      description: "Celery tasks are experiencing high latency."

  - alert: HighQueueLength
    expr: celery_queue_length > 100
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "High Queue Length in Celery"
      description: "Celery queue has a large number of pending tasks."

  - alert: HighMemoryUsage
    expr: celery_memory_usage_bytes > 536870912  # 512 MB
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "High Memory Usage in Celery"
      description: "Celery is using more than 512 MB of memory."

  - alert: ConnectionFailures
    expr: celery_connection_errors > 10
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Celery Connection Failures"
      description: "Celery is experiencing connection failures to the backend."

  - alert: HighTaskFailureRate
    expr: celery_task_failure_count / celery_task_processed_total > 0.1
    for: 5m
    labels:
      severity: critical
    annotations:
      summary: "High Task Failure Rate in Celery"
      description: "Celery tasks are failing at a high rate."

Celery 后端服务 Grafana Dashboard

对于 Celery 后端服务的 Grafana 仪表板,您可以根据需要选择一个适合您的仪表板。这些仪表板通常包括任务吞吐量、任务延迟、队列长度、内存使用、CPU 使用率、任务成功率、任务失败次数、任务重试次数、连接错误、工作进程数量、工作进程负载等关键性能指标的图表和可视化。您可以在 Grafana 的仪表板库或 Grafana 社区中查找这些仪表板,并按照需要进行定制和配置。

0 人点赞