Redis 告警配置参考
针对Redis性能指标,分别提供Redis日志指标导出器的配置、Prometheus监控规则(YAML格式)、告警规则,以及一个适合的Grafana仪表板配置。
Redis 日志指标导出器
日志/指标导出器
- Redis日志:可以通过Redis的日志文件来捕捉日志数据。这通常涉及到配置Redis,以将日志输出到一个文件中,然后使用类似Filebeat的工具来收集这些日志并发送到日志分析平台。
- Redis指标:可以使用redis_exporter,这是一个为Prometheus设计的Redis指标导出器。它可以收集和导出Redis的性能指标,如命令统计、内存使用情况、CPU使用率等。
Redis服务 Prometheus 监控规则 (YAML)
监控规则
代码语言:yaml复制groups:
- name: redis_metrics
rules:
- record: redis_commands_processed_total
expr: rate(redis_commands_processed_total[5m])
- record: redis_memory_usage_bytes
expr: redis_memory_used_bytes
- record: redis_cpu_usage_percentage
expr: rate(redis_cpu_user_seconds_total[5m]) rate(redis_cpu_system_seconds_total[5m])
- record: redis_net_input_bytes
expr: rate(redis_net_input_bytes_total[5m])
- record: redis_net_output_bytes
expr: rate(redis_net_output_bytes_total[5m])
Redis服务 Prometheus 告警规则 (YAML)
告警规则
代码语言:yaml复制groups:
- name: redis_alerts
rules:
- alert: HighMemoryUsage
expr: redis_memory_usage_bytes > (redis_memory_max_bytes * 0.8)
for: 5m
labels:
severity: critical
annotations:
summary: "High Memory Usage in Redis"
description: "Redis server {{ $labels.instance }} is using more than 80% of its configured max memory."
- alert: HighCommandRate
expr: redis_commands_processed_total > 10000
for: 5m
labels:
severity: warning
annotations:
summary: "High Command Rate on Redis"
description: "Redis server {{ $labels.instance }} is processing more than 10000 commands per second."
Redis后端服务 Grafana 仪表板
对于Grafana仪表板,您可以在Grafana Dashboards网站上找到专门为Redis设计的仪表板。这些仪表板通常包括关键性能指标,如命令统计、吞吐量、延迟、内存使用、CPU使用率、网络带宽等。
一个典型的例子可能是“Redis Overview”仪表板,它提供了一个全面的视图,展示了Redis实例的主要性能指标。您可以通过导入仪表板ID或直接从网站下载JSON文件来添加这些仪表板到您的Grafana实例。
这些配置和仪表板是根据您的需求和环境可能需要调整和定制。
Kafka 告警配置参考
Kafka 日志指标导出器
对于 Kafka 日志指标导出器,您可以使用 Kafka 的内置 JMX 支持和 JMX Exporter 来捕获 Kafka 的性能指标。这需要启用 Kafka 的 JMX 功能,然后使用 JMX Exporter 导出这些指标并发送到 Prometheus。
Kafka 服务 Prometheus 监控规则 (YAML)
代码语言:yaml复制groups:
- name: kafka_metrics
rules:
- record: kafka_messages_per_second
expr: rate(kafka_server_brokertopicmetrics_messagesin_total{topic="your_topic"}[5m])
- record: kafka_latency_seconds
expr: kafka_server_brokertopicmetrics_totaltime_seconds{topic="your_topic"} / kafka_server_brokertopicmetrics_messagesin_total{topic="your_topic"}
- record: kafka_queue_size
expr: kafka_server_brokertopicmetrics_messagesin_total{topic="your_topic"} - kafka_server_brokertopicmetrics_messagesout_total{topic="your_topic"}
- record: kafka_cpu_usage_percentage
expr: 100 - avg by (instance)(irate(node_cpu_seconds_total{mode="idle"}[5m]))
- record: kafka_memory_usage_bytes
expr: node_memory_MemTotal_bytes - node_memory_MemFree_bytes
- record: kafka_error_rate
expr: rate(kafka_server_brokertopicmetrics_failedfetchrequests_total{topic="your_topic"}[5m]) / rate(kafka_server_brokertopicmetrics_requests_total{topic="your_topic"}[5m])
- record: kafka_retry_count
expr: sum(kafka_consumer_rebalance_total{topic="your_topic"})
- record: kafka_client_connections
expr: kafka_server_metadata_response_version{version="0.9.0.1"} / ignoring(version) count(kafka_server_metadata_response_version{version="0.9.0.1"})
- record: kafka_client_connection_failures
expr: sum(kafka_network_handlers_total{result="NetworkError"})
请注意,上述规则中的 "your_topic" 部分需要根据您的 Kafka 主题名称进行替换。
Kafka 服务 Prometheus 告警规则 (YAML)
代码语言:yaml复制groups:
- name: kafka_alerts
rules:
- alert: HighLatency
expr: kafka_latency_seconds > 0.5
for: 5m
labels:
severity: critical
annotations:
summary: "High Latency in Kafka"
description: "Kafka topic 'your_topic' is experiencing high latency."
- alert: HighErrorRate
expr: kafka_error_rate > 0.05
for: 5m
labels:
severity: warning
annotations:
summary: "High Error Rate in Kafka"
description: "Kafka topic 'your_topic' has a high error rate."
- alert: HighQueueSize
expr: kafka_queue_size > 1000
for: 5m
labels:
severity: warning
annotations:
summary: "High Queue Size in Kafka"
description: "Kafka topic 'your_topic' has a large queue size."
- alert: ConnectionFailures
expr: kafka_client_connection_failures > 10
for: 5m
labels:
severity: warning
annotations:
summary: "Kafka Connection Failures"
description: "Kafka clients are experiencing connection failures."
同样,上述规则中的 "your_topic" 部分需要根据您的 Kafka 主题名称进行替换。
Kafka 后端服务 Grafana Dashboard
有许多可用于 Kafka 的 Grafana 仪表板,您可以根据需要选择一个适合您的仪表板。这些仪表板通常包括吞吐量、延迟、队列大小、CPU 使用率、内存使用量、错误率、重试次数、客户端连接数等关键性能指标的图表和可视化。您可以在 Grafana 的仪表板库或 Grafana 社区中查找这些仪表板,并按照需要进行定制和配置。
Celery 告警配置参考
任务队列监控项相关的 Celery 配置:
Celery 日志指标导出器
对于 Celery 日志指标导出器,您可以使用 Celery 的内置日志功能来捕获 Celery 任务的性能指标。这通常涉及配置 Celery 以将任务执行信息记录到日志文件中,然后使用类似于 Filebeat 的工具来收集这些日志并发送到日志分析平台。
Celery 服务 Prometheus 监控规则 (YAML)
以下是一些示例监控规则,可以用于监控 Celery 任务队列的性能:
代码语言:yaml复制groups:
- name: celery_metrics
rules:
- record: celery_task_throughput
expr: rate(celery_task_processed_total[5m])
- record: celery_task_latency_seconds
expr: celery_task_processing_time_seconds
- record: celery_queue_length
expr: celery_queue_size
- record: celery_memory_usage_bytes
expr: celery_memory_used_bytes
- record: celery_cpu_usage_percentage
expr: 100 - avg by (instance)(irate(node_cpu_seconds_total{mode="idle"}[5m]))
- record: celery_task_success_rate
expr: celery_task_successful_total / celery_task_processed_total
- record: celery_task_failure_count
expr: celery_task_failed_total
- record: celery_task_retry_count
expr: celery_task_retry_total
- record: celery_queue_service_status
expr: celery_service_status
- record: celery_connection_errors
expr: celery_connection_failures_total
- record: celery_worker_count
expr: celery_active_workers_total
- record: celery_worker_load
expr: celery_worker_load
Celery 服务 Prometheus 告警规则 (YAML)
以下是一些示例告警规则,可以用于监控 Celery 任务队列的健康和性能问题:
代码语言:yaml复制groups:
- name: celery_alerts
rules:
- alert: HighTaskLatency
expr: celery_task_latency_seconds > 10
for: 5m
labels:
severity: critical
annotations:
summary: "High Task Latency in Celery"
description: "Celery tasks are experiencing high latency."
- alert: HighQueueLength
expr: celery_queue_length > 100
for: 5m
labels:
severity: warning
annotations:
summary: "High Queue Length in Celery"
description: "Celery queue has a large number of pending tasks."
- alert: HighMemoryUsage
expr: celery_memory_usage_bytes > 536870912 # 512 MB
for: 5m
labels:
severity: warning
annotations:
summary: "High Memory Usage in Celery"
description: "Celery is using more than 512 MB of memory."
- alert: ConnectionFailures
expr: celery_connection_errors > 10
for: 5m
labels:
severity: warning
annotations:
summary: "Celery Connection Failures"
description: "Celery is experiencing connection failures to the backend."
- alert: HighTaskFailureRate
expr: celery_task_failure_count / celery_task_processed_total > 0.1
for: 5m
labels:
severity: critical
annotations:
summary: "High Task Failure Rate in Celery"
description: "Celery tasks are failing at a high rate."
Celery 后端服务 Grafana Dashboard
对于 Celery 后端服务的 Grafana 仪表板,您可以根据需要选择一个适合您的仪表板。这些仪表板通常包括任务吞吐量、任务延迟、队列长度、内存使用、CPU 使用率、任务成功率、任务失败次数、任务重试次数、连接错误、工作进程数量、工作进程负载等关键性能指标的图表和可视化。您可以在 Grafana 的仪表板库或 Grafana 社区中查找这些仪表板,并按照需要进行定制和配置。