0. Intr
1. Startup
初始条件介绍和必要准备工作,代码来自https://github.com/thuml/Anomaly-Transformer,论文数据来自作者提供的Google Cloud
初始环境信息
显卡:耕升GTX 1660 6GB
CPU:Intel i7-10700 2.90GHz
内存:16GB DDR4
系统:Ubuntu 20.04.1 内核5.15.0-89-generic (非虚拟机)
CUDA:release 11.5
显卡驱动信息:
代码语言:javascript复制Thu Nov 30 16:24:15 2023
---------------------------------------------------------------------------------------
| NVIDIA-SMI 535.129.03 Driver Version: 535.129.03 CUDA Version: 12.2 |
|----------------------------------------- ---------------------- ----------------------
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|========================================= ====================== ======================|
| 0 NVIDIA GeForce GTX 1660 Off | 00000000:01:00.0 On | N/A |
| 77% 78C P0 96W / 120W | 5636MiB / 6144MiB | 99% Default |
| | | N/A |
----------------------------------------- ---------------------- ----------------------
安装Pytorch 1.8.0
在已经安装conda 22.9.0,并用conda创建了python 3.6虚拟环境(环境命名为Anomaly-Transformer)的前提下,尝试使用conda
安装pytorch(失败,网络原因导致较大文件下载失败,conda
参照了这个链接换清华源仍然无法解决)
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
因此尝试pip安装(成功,可以正常使用import torch
)
pip install torch==1.8.0 cu111 torchvision==0.9.0 cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
一开始比较困扰的就是CUDA版本对应的问题,但后面看似乎cudatoolkit
版本和机器安装的CUDA
版本不用完全对应也能安装并使用上pytorch.
2. 论文实验复现
将论文提出方法应用到SDM、PSM、MSL、SMAP、SWaT共计五个数据集,复现文章评估数据。
2.1 SMD
作为第一个登场的脚本,很明显是要报一堆大大小小的错的。还好问题都不大,搞定了后面就畅通无阻了。
首次运行SMD.sh
代码语言:javascript复制(Anomaly-Transformer) username@username-ubuntu:/media/username/folder/Dev/Anomaly-Transformer$ bash ./scripts/SMD.sh
./scripts/SMD.sh: line 2: $'r': command not found
Traceback (most recent call last):
File "main.py", line 7, in <module>
from solver import Solver
File "/media/username/folder/Dev/Anomaly-Transformer/solver.py", line 9, in <module>
from data_factory.data_loader import get_loader_segment
File "/media/username/folder/Dev/Anomaly-Transformer/data_factory/data_loader.py", line 11, in <module>
import pandas as pd
ModuleNotFoundError: No module named 'pandas'
Traceback (most recent call last):
File "main.py", line 7, in <module>
from solver import Solver
File "/media/username/folder/Dev/Anomaly-Transformer/solver.py", line 9, in <module>
from data_factory.data_loader import get_loader_segment
File "/media/username/folder/Dev/Anomaly-Transformer/data_factory/data_loader.py", line 11, in <module>
import pandas as pd
ModuleNotFoundError: No module named 'pandas'
问题定位与解决:可见问题主要都是package缺失,缺失package和安装命令如下:
sklearn
: 命令行输入pip install scikit-learn
pandas
: 命令行输入pip install pandas
再次运行SMD.sh
代码语言:javascript复制(Anomaly-Transformer) username@username-ubuntu:/media/username/folder/Dev/Anomaly-Transformer$ bash ./scripts/SMD.sh
./scripts/SMD.sh: line 2: $'r': command not found
------------ Options -------------
anormly_ratio: 0.5
batch_size: 256
data_path: dataset/SMD
dataset: SMD
input_c: 38
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 10
output_c: 38
pretrained_model: None
win_size: 100
-------------- End ----------------
Traceback (most recent call last):
File "main.py", line 52, in <module>
main(config)
File "main.py", line 18, in main
solver = Solver(vars(config))
File "/media/username/folder/Dev/Anomaly-Transformer/solver.py", line 74, in __init__
dataset=self.dataset)
File "/media/username/folder/Dev/Anomaly-Transformer/data_factory/data_loader.py", line 204, in get_loader_segment
dataset = SMDSegLoader(data_path, win_size, step, mode)
File "/media/username/folder/Dev/Anomaly-Transformer/data_factory/data_loader.py", line 166, in __init__
data = np.load(data_path "/SMD_train.npy")
File "/home/username/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/numpy/lib/npyio.py", line 416, in load
fid = stack.enter_context(open(os_fspath(file), "rb"))
FileNotFoundError: [Errno 2] No such file or directory: 'dataset/SMD/SMD_train.npy'
------------ Options -------------
anormly_ratio: 0.5
batch_size: 256
data_path: dataset/SMD
dataset: SMD
input_c: 38
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 38
pretrained_model: 20
win_size: 100
-------------- End ----------------
Traceback (most recent call last):
File "main.py", line 52, in <module>
main(config)
File "main.py", line 18, in main
solver = Solver(vars(config))
File "/media/username/folder/Dev/Anomaly-Transformer/solver.py", line 74, in __init__
dataset=self.dataset)
File "/media/username/folder/Dev/Anomaly-Transformer/data_factory/data_loader.py", line 204, in get_loader_segment
dataset = SMDSegLoader(data_path, win_size, step, mode)
File "/media/username/folder/Dev/Anomaly-Transformer/data_factory/data_loader.py", line 166, in __init__
data = np.load(data_path "/SMD_train.npy")
File "/home/username/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/numpy/lib/npyio.py", line 416, in load
fid = stack.enter_context(open(os_fspath(file), "rb"))
FileNotFoundError: [Errno 2] No such file or directory: 'dataset/SMD/SMD_train.npy'
问题定位与解决:问题主要为数据集文件找不到:'dataset/SMD/SMD_train.npy'
,根据该提示将下载的数据集文件(Tsinghua Cloud or Google Cloud)整理后按照如下结构存放:
Anomoly_Transformer/
├── dataset/
│ ├── SMD/
│ │ ├── SMD_test.npy
│ │ ├── SMD_train.npy
│ │ └── ......
│ ├── PSM/
│ │ ├── test.csv
│ │ ├── train.csv
│ │ └── ......
│ ├── MSL/
│ │ ├── MSL_test.npy
│ │ └── ......
│ └── SMAP/
│ ├── SMAP_test.npy
│ └── ......
└── ......
第三次及之后运行SMD.sh
代码语言:javascript复制(Anomaly-Transformer) username@username-ubuntu:/media/username/folder/Dev/Anomaly-Transformer$ bash ./scripts/SMD.sh
./scripts/SMD.sh: line 2: $'r': command not found
------------ Options -------------
anormly_ratio: 0.5
batch_size: 256
data_path: dataset/SMD
dataset: SMD
input_c: 38
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 10
output_c: 38
pretrained_model: None
win_size: 100
-------------- End ----------------
======================TRAIN MODE======================
Traceback (most recent call last):
File "main.py", line 52, in <module>
main(config)
File "main.py", line 21, in main
solver.train()
File "/media/username/folder/Dev/Anomaly-Transformer/solver.py", line 161, in train
self.win_size)).detach())) torch.mean(
File "/media/username/folder/Dev/Anomaly-Transformer/solver.py", line 13, in my_kl_loss
res = p * (torch.log(p 0.0001) - torch.log(q 0.0001))
RuntimeError: CUDA out of memory. Tried to allocate 80.00 MiB (GPU 0; 5.79 GiB total capacity; 3.97 GiB already allocated; 49.75 MiB free; 4.11 GiB reserved in total by PyTorch)
------------ Options -------------
anormly_ratio: 0.5
batch_size: 256
data_path: dataset/SMD
dataset: SMD
input_c: 38
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 38
pretrained_model: 20
win_size: 100
-------------- End ----------------
Traceback (most recent call last):
File "main.py", line 52, in <module>
main(config)
File "main.py", line 23, in main
solver.test()
File "/media/username/folder/Dev/Anomaly-Transformer/solver.py", line 210, in test
os.path.join(str(self.model_save_path), str(self.dataset) '_checkpoint.pth')))
File "/home/username/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/serialization.py", line 579, in load
with _open_file_like(f, 'rb') as opened_file:
File "/home/username/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/serialization.py", line 230, in _open_file_like
return _open_file(name_or_buffer, mode)
File "/home/username/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/serialization.py", line 211, in __init__
super(_open_file, self).__init__(open(name, mode))
FileNotFoundError: [Errno 2] No such file or directory: 'checkpoints/SMD_checkpoint.pth'
问题定位与解决:
- 问题1:CUDA out of memory:
RuntimeError: CUDA out of memory. Tried to allocate 80.00 MiB (GPU 0; 5.79 GiB total capacity; 3.97 GiB already allocated; 49.75 MiB free; 4.11 GiB reserved in total by PyTorch)
,初步认为是CUDA显存分配问题,模型所需显存没有得到满足。 - 问题2:模型checkpoint文件缺失:由于训练未成功进行,使得模型checkpoint文件沒有成功生成,从而在test阶段想要读取模型时无法读取。
因此应该围绕CUDA显存分配优化进行研究。
解决过程:
- 在博文中找到方案1:减小batch_size
- 尝试将启动命令中训练与测试的
batch_size
均从256
改为128
,然后重新运行./scripts/SMD.sh
- 仍然爆显存:
RuntimeError: CUDA out of memory. Tried to allocate 40.00 MiB (GPU 0; 5.79 GiB total capacity; 3.89 GiB already allocated; 82.94 MiB free; 4.05 GiB reserved in total by PyTorch)
- 尝试修改
batch_size
为64
,然后重新运行./scripts/SMD.sh
- 问题依旧,尝试修改
batch_size
为32
,然后重新运行./scripts/SMD.sh
- 成功开始训练,迹象为观察到如下训练过程打印的epoch信息:
======================TRAIN MODE======================
speed: 0.1335s/iter; left time: 283.1503s
speed: 0.1289s/iter; left time: 260.5845s
Epoch: 1 cost time: 29.139591455459595
Epoch: 1, Steps: 222 | Train Loss: -40.3103769 Vali Loss: -46.1086967
Validation loss decreased (inf --> -46.108697). Saving model ...
Updating learning rate to 0.0001
speed: 0.2505s/iter; left time: 475.7060s
speed: 0.1302s/iter; left time: 234.2822s
Epoch: 2 cost time: 28.97248649597168
在经过四个epoch后停止,进入test阶段,并输出了最终实验结果:
代码语言:javascript复制Threshold : 0.06388568006455485
pred: (708400,)
gt: (708400,)
pred: (708400,)
gt: (708400,)
Accuracy : 0.9926, Precision : 0.8927, Recall : 0.9329, F-score : 0.9124
完整的训练、测试过程控制台输出如下:
代码语言:javascript复制(Anomaly-Transformer) username@username-ubuntu:/media/username/folder/Dev/Anomaly-Transformer$ bash ./scripts/SMD.sh
------------ Options -------------
anormly_ratio: 0.5
batch_size: 32
data_path: dataset/SMD
dataset: SMD
input_c: 38
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 10
output_c: 38
pretrained_model: None
win_size: 100
-------------- End ----------------
======================TRAIN MODE======================
speed: 0.1335s/iter; left time: 283.1503s
speed: 0.1289s/iter; left time: 260.5845s
Epoch: 1 cost time: 29.139591455459595
Epoch: 1, Steps: 222 | Train Loss: -40.3103769 Vali Loss: -46.1086967
Validation loss decreased (inf --> -46.108697). Saving model ...
Updating learning rate to 0.0001
speed: 0.2505s/iter; left time: 475.7060s
speed: 0.1302s/iter; left time: 234.2822s
Epoch: 2 cost time: 28.97248649597168
Epoch: 2, Steps: 222 | Train Loss: -47.4852449 Vali Loss: -46.8629997
EarlyStopping counter: 1 out of 3
Updating learning rate to 5e-05
speed: 0.2555s/iter; left time: 428.5185s
speed: 0.1307s/iter; left time: 206.1918s
Epoch: 3 cost time: 29.593196392059326
Epoch: 3, Steps: 222 | Train Loss: -47.8205990 Vali Loss: -47.0798451
EarlyStopping counter: 2 out of 3
Updating learning rate to 2.5e-05
speed: 0.2540s/iter; left time: 369.4981s
speed: 0.1327s/iter; left time: 179.8330s
Epoch: 4 cost time: 29.744439840316772
Epoch: 4, Steps: 222 | Train Loss: -47.9206608 Vali Loss: -47.1366013
EarlyStopping counter: 3 out of 3
Early stopping
------------ Options -------------
anormly_ratio: 0.5
batch_size: 32
data_path: dataset/SMD
dataset: SMD
input_c: 38
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 38
pretrained_model: 20
win_size: 100
-------------- End ----------------
======================TEST MODE======================
/home/username/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.06388568006455485
pred: (708400,)
gt: (708400,)
pred: (708400,)
gt: (708400,)
Accuracy : 0.9926, Precision : 0.8927, Recall : 0.9329, F-score : 0.9124
2.2 PSM
首次运行PSM.sh
成功结束,测试结果摘要如下:
代码语言:javascript复制======================TEST MODE======================
Threshold : 0.0011754722148179996
pred: (87800,)
gt: (87800,)
pred: (87800,)
gt: (87800,)
Accuracy : 0.9882, Precision : 0.9697, Recall : 0.9883, F-score : 0.9789
完整执行过程如下:
代码语言:javascript复制nomaly-Transformer$ bash ./scripts/PSM.sh
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/PSM
dataset: PSM
input_c: 25
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 25
pretrained_model: None
win_size: 100
-------------- End ----------------
test: (87841, 25)
train: (132481, 25)
test: (87841, 25)
train: (132481, 25)
test: (87841, 25)
train: (132481, 25)
test: (87841, 25)
train: (132481, 25)
======================TRAIN MODE======================
speed: 0.1336s/iter; left time: 1644.4129s
speed: 0.1275s/iter; left time: 1556.9812s
speed: 0.1276s/iter; left time: 1545.0969s
speed: 0.1277s/iter; left time: 1534.3159s
speed: 0.1279s/iter; left time: 1524.0642s
speed: 0.1279s/iter; left time: 1510.8930s
speed: 0.1279s/iter; left time: 1498.2409s
speed: 0.1279s/iter; left time: 1485.3983s
speed: 0.1279s/iter; left time: 1472.8507s
speed: 0.1280s/iter; left time: 1460.4547s
speed: 0.1280s/iter; left time: 1448.4515s
speed: 0.1282s/iter; left time: 1437.4174s
speed: 0.1284s/iter; left time: 1427.1299s
speed: 0.1284s/iter; left time: 1414.0394s
speed: 0.1284s/iter; left time: 1401.1101s
speed: 0.1285s/iter; left time: 1389.8639s
speed: 0.1284s/iter; left time: 1375.8026s
speed: 0.1283s/iter; left time: 1361.4072s
speed: 0.1284s/iter; left time: 1349.9602s
speed: 0.1284s/iter; left time: 1336.6942s
speed: 0.1282s/iter; left time: 1322.4420s
speed: 0.1283s/iter; left time: 1310.0931s
speed: 0.1283s/iter; left time: 1297.5508s
speed: 0.1282s/iter; left time: 1283.9510s
speed: 0.1283s/iter; left time: 1271.7995s
speed: 0.1283s/iter; left time: 1259.0883s
speed: 0.1283s/iter; left time: 1245.8020s
speed: 0.1283s/iter; left time: 1233.0175s
speed: 0.1283s/iter; left time: 1220.1547s
speed: 0.1283s/iter; left time: 1207.7776s
speed: 0.1284s/iter; left time: 1195.7177s
speed: 0.1282s/iter; left time: 1181.4120s
speed: 0.1283s/iter; left time: 1168.8951s
speed: 0.1282s/iter; left time: 1155.4520s
speed: 0.1283s/iter; left time: 1143.4009s
speed: 0.1284s/iter; left time: 1131.5084s
speed: 0.1283s/iter; left time: 1117.7446s
speed: 0.1282s/iter; left time: 1104.4219s
speed: 0.1282s/iter; left time: 1091.2835s
speed: 0.1283s/iter; left time: 1078.9449s
speed: 0.1282s/iter; left time: 1065.9970s
Epoch: 1 cost time: 531.1504812240601
Epoch: 1, Steps: 4137 | Train Loss: -48.0091480 Vali Loss: -48.8543076
Validation loss decreased (inf --> -48.854308). Saving model ...
Updating learning rate to 0.0001
speed: 1.2588s/iter; left time: 10290.9493s
speed: 0.1282s/iter; left time: 1035.4373s
speed: 0.1282s/iter; left time: 1022.6818s
speed: 0.1283s/iter; left time: 1010.5991s
speed: 0.1282s/iter; left time: 996.7476s
speed: 0.1283s/iter; left time: 984.5289s
speed: 0.1282s/iter; left time: 971.1445s
speed: 0.1282s/iter; left time: 958.5275s
speed: 0.1282s/iter; left time: 945.7043s
speed: 0.1283s/iter; left time: 933.1298s
speed: 0.1282s/iter; left time: 919.9409s
speed: 0.1282s/iter; left time: 907.2530s
speed: 0.1282s/iter; left time: 894.4075s
speed: 0.1282s/iter; left time: 881.5417s
speed: 0.1283s/iter; left time: 869.0542s
speed: 0.1283s/iter; left time: 856.4396s
speed: 0.1284s/iter; left time: 844.1700s
speed: 0.1283s/iter; left time: 830.4890s
speed: 0.1282s/iter; left time: 816.9863s
speed: 0.1283s/iter; left time: 804.9645s
speed: 0.1282s/iter; left time: 791.7809s
speed: 0.1283s/iter; left time: 779.5495s
speed: 0.1283s/iter; left time: 766.7960s
speed: 0.1282s/iter; left time: 753.4139s
speed: 0.1282s/iter; left time: 740.1944s
speed: 0.1282s/iter; left time: 727.6711s
speed: 0.1284s/iter; left time: 715.8365s
speed: 0.1282s/iter; left time: 701.6651s
speed: 0.1283s/iter; left time: 689.5141s
speed: 0.1282s/iter; left time: 676.0763s
speed: 0.1282s/iter; left time: 663.4497s
speed: 0.1282s/iter; left time: 650.6223s
speed: 0.1284s/iter; left time: 638.5416s
speed: 0.1282s/iter; left time: 625.1153s
speed: 0.1283s/iter; left time: 612.6931s
speed: 0.1283s/iter; left time: 599.7292s
speed: 0.1282s/iter; left time: 586.6867s
speed: 0.1284s/iter; left time: 574.6260s
speed: 0.1283s/iter; left time: 561.4819s
speed: 0.1283s/iter; left time: 548.4647s
speed: 0.1283s/iter; left time: 535.5813s
Epoch: 2 cost time: 530.542858839035
Epoch: 2, Steps: 4137 | Train Loss: -48.9527894 Vali Loss: -48.9326362
EarlyStopping counter: 1 out of 3
Updating learning rate to 5e-05
speed: 1.2538s/iter; left time: 5062.9567s
speed: 0.1284s/iter; left time: 505.7279s
speed: 0.1284s/iter; left time: 492.9298s
speed: 0.1283s/iter; left time: 479.5802s
speed: 0.1282s/iter; left time: 466.2639s
speed: 0.1283s/iter; left time: 453.8794s
speed: 0.1284s/iter; left time: 441.3263s
speed: 0.1282s/iter; left time: 428.0605s
speed: 0.1284s/iter; left time: 415.8170s
speed: 0.1283s/iter; left time: 402.4540s
speed: 0.1282s/iter; left time: 389.4098s
speed: 0.1283s/iter; left time: 376.9801s
speed: 0.1283s/iter; left time: 364.0838s
speed: 0.1283s/iter; left time: 351.2112s
speed: 0.1282s/iter; left time: 338.1965s
speed: 0.1283s/iter; left time: 325.5066s
speed: 0.1282s/iter; left time: 312.6431s
speed: 0.1284s/iter; left time: 300.1481s
speed: 0.1283s/iter; left time: 287.0474s
speed: 0.1284s/iter; left time: 274.4572s
speed: 0.1282s/iter; left time: 261.2532s
speed: 0.1282s/iter; left time: 248.4272s
speed: 0.1282s/iter; left time: 235.6939s
speed: 0.1282s/iter; left time: 222.7621s
speed: 0.1282s/iter; left time: 209.9875s
speed: 0.1282s/iter; left time: 197.1853s
speed: 0.1282s/iter; left time: 184.3661s
speed: 0.1283s/iter; left time: 171.6811s
speed: 0.1285s/iter; left time: 159.0394s
speed: 0.1283s/iter; left time: 145.9588s
speed: 0.1283s/iter; left time: 133.1463s
speed: 0.1283s/iter; left time: 120.3105s
speed: 0.1282s/iter; left time: 107.4170s
speed: 0.1283s/iter; left time: 94.6591s
speed: 0.1282s/iter; left time: 81.8221s
speed: 0.1282s/iter; left time: 68.9838s
speed: 0.1282s/iter; left time: 56.1650s
speed: 0.1282s/iter; left time: 43.3404s
speed: 0.1283s/iter; left time: 30.5237s
speed: 0.1282s/iter; left time: 17.6921s
speed: 0.1282s/iter; left time: 4.8703s
Epoch: 3 cost time: 530.5573189258575
Epoch: 3, Steps: 4137 | Train Loss: -48.9824078 Vali Loss: -48.9623636
EarlyStopping counter: 2 out of 3
Updating learning rate to 2.5e-05
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/PSM
dataset: PSM
input_c: 25
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 25
pretrained_model: 20
win_size: 100
-------------- End ----------------
test: (87841, 25)
train: (132481, 25)
test: (87841, 25)
train: (132481, 25)
test: (87841, 25)
train: (132481, 25)
test: (87841, 25)
train: (132481, 25)
======================TEST MODE======================
/home/username/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.0011754722148179996
pred: (87800,)
gt: (87800,)
pred: (87800,)
gt: (87800,)
Accuracy : 0.9882, Precision : 0.9697, Recall : 0.9883, F-score : 0.9789
2.3 MSL
首次运行MSL.sh
代码语言:javascript复制(Anomaly-Transformer) username@username-ubuntu:/media/username/folder/Dev/Anomaly-Transformer$ bash ./scripts/MSL.sh
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/MSL
dataset: MSL
input_c: 55
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 55
pretrained_model: None
win_size: 100
-------------- End ----------------
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
Traceback (most recent call last):
File "main.py", line 52, in <module>
main(config)
File "main.py", line 18, in main
solver = Solver(vars(config))
File "/media/username/folder/Dev/Anomaly-Transformer/solver.py", line 85, in __init__
self.build_model()
File "/media/username/folder/Dev/Anomaly-Transformer/solver.py", line 90, in build_model
self.model = AnomalyTransformer(win_size=self.win_size, enc_in=self.input_c, c_out=self.output_c, e_layers=3)
File "/media/username/folder/Dev/Anomaly-Transformer/model/AnomalyTransformer.py", line 77, in __init__
) for l in range(e_layers)
File "/media/username/folder/Dev/Anomaly-Transformer/model/AnomalyTransformer.py", line 77, in <listcomp>
) for l in range(e_layers)
File "/media/username/folder/Dev/Anomaly-Transformer/model/attn.py", line 29, in __init__
self.distances = torch.zeros((window_size, window_size)).cuda()
File "/home/username/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/cuda/__init__.py", line 170, in _lazy_init
torch._C._cuda_init()
RuntimeError: No CUDA GPUs are available
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/MSL
dataset: MSL
input_c: 55
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 55
pretrained_model: 20
win_size: 100
-------------- End ----------------
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
Traceback (most recent call last):
File "main.py", line 52, in <module>
main(config)
File "main.py", line 18, in main
solver = Solver(vars(config))
File "/media/username/folder/Dev/Anomaly-Transformer/solver.py", line 85, in __init__
self.build_model()
File "/media/username/folder/Dev/Anomaly-Transformer/solver.py", line 90, in build_model
self.model = AnomalyTransformer(win_size=self.win_size, enc_in=self.input_c, c_out=self.output_c, e_layers=3)
File "/media/username/folder/Dev/Anomaly-Transformer/model/AnomalyTransformer.py", line 77, in __init__
) for l in range(e_layers)
File "/media/username/folder/Dev/Anomaly-Transformer/model/AnomalyTransformer.py", line 77, in <listcomp>
) for l in range(e_layers)
File "/media/username/folder/Dev/Anomaly-Transformer/model/attn.py", line 29, in __init__
self.distances = torch.zeros((window_size, window_size)).cuda()
File "/home/username/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/cuda/__init__.py", line 170, in _lazy_init
torch._C._cuda_init()
RuntimeError: No CUDA GPUs are available
运行失败,原因为RuntimeError: No CUDA GPUs are available
,不知道为什么GPU不可用了。尝试看看GPU是否可用。
(Anomaly-Transformer) username@username-ubuntu:/media/username/folder/Dev/Anomaly-Transformer$ python
Python 3.6.13 |Anaconda, Inc.| (default, Jun 4 2021, 14:25:59)
[GCC 7.5.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> print(torch.cuda.device_count())
1
>>> print(torch.cuda.is_available())
True
结果正常???再尝试运行MSL.sh
仍然有问题,检查MSL.sh
本身,发现第一行有问题:
export CUDA_VISIBLE_DEVICES=7
因为电脑只有一张显卡,序号不应该是7,应该为0。修改后再运行MSL.sh
,正常了...(大无语,干嘛突然写个7,其他脚本的明明都是0)
再次运行MSL.sh
修改GPU序号后正常运行,测试结果摘要如下
代码语言:javascript复制======================TEST MODE======================
Threshold : 0.0012788161612115718
pred: (73700,)
gt: (73700,)
pred: (73700,)
gt: (73700,)
Accuracy : 0.9863, Precision : 0.9186, Recall : 0.9545, F-score : 0.9362
完整执行过程如下:
代码语言:javascript复制(Anomaly-Transformer) username@username-ubuntu:/media/username/folder/Dev/Anomaly-Transformer$ bash ./scripts/MSL.sh
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/MSL
dataset: MSL
input_c: 55
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 55
pretrained_model: None
win_size: 100
-------------- End ----------------
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
======================TRAIN MODE======================
speed: 0.1424s/iter; left time: 763.5606s
speed: 0.1358s/iter; left time: 714.4375s
speed: 0.1387s/iter; left time: 716.0470s
speed: 0.1354s/iter; left time: 685.1058s
speed: 0.1357s/iter; left time: 673.0052s
speed: 0.1402s/iter; left time: 681.4136s
speed: 0.1380s/iter; left time: 656.8551s
speed: 0.1355s/iter; left time: 631.5301s
speed: 0.1360s/iter; left time: 620.2718s
speed: 0.1350s/iter; left time: 602.2681s
speed: 0.1344s/iter; left time: 586.1590s
speed: 0.1352s/iter; left time: 576.0738s
speed: 0.1372s/iter; left time: 570.8950s
speed: 0.1358s/iter; left time: 551.6753s
speed: 0.1326s/iter; left time: 525.1665s
speed: 0.1336s/iter; left time: 515.8068s
speed: 0.1349s/iter; left time: 507.2338s
speed: 0.1348s/iter; left time: 493.3304s
Epoch: 1 cost time: 247.81738114356995
Epoch: 1, Steps: 1820 | Train Loss: -47.0458832 Vali Loss: -46.7697310
Validation loss decreased (inf --> -46.769731). Saving model ...
Updating learning rate to 0.0001
speed: 1.1043s/iter; left time: 3910.1910s
speed: 0.1326s/iter; left time: 456.2046s
speed: 0.1330s/iter; left time: 444.4217s
speed: 0.1336s/iter; left time: 433.0193s
speed: 0.1396s/iter; left time: 438.4048s
speed: 0.1384s/iter; left time: 420.9290s
speed: 0.1358s/iter; left time: 399.4554s
speed: 0.1363s/iter; left time: 387.1776s
speed: 0.1354s/iter; left time: 371.1777s
speed: 0.1354s/iter; left time: 357.5956s
speed: 0.1351s/iter; left time: 343.2376s
speed: 0.1355s/iter; left time: 330.8024s
speed: 0.1362s/iter; left time: 318.7658s
speed: 0.1367s/iter; left time: 306.3689s
speed: 0.1363s/iter; left time: 291.7184s
speed: 0.1358s/iter; left time: 277.2149s
speed: 0.1362s/iter; left time: 264.4203s
speed: 0.1352s/iter; left time: 248.9006s
Epoch: 2 cost time: 246.60186314582825
Epoch: 2, Steps: 1820 | Train Loss: -48.5221037 Vali Loss: -47.3841785
EarlyStopping counter: 1 out of 3
Updating learning rate to 5e-05
speed: 1.1290s/iter; left time: 1942.9595s
speed: 0.1394s/iter; left time: 225.9686s
speed: 0.1351s/iter; left time: 205.5129s
speed: 0.1406s/iter; left time: 199.7962s
speed: 0.1332s/iter; left time: 175.9856s
speed: 0.1326s/iter; left time: 161.8460s
speed: 0.1314s/iter; left time: 147.2958s
speed: 0.1334s/iter; left time: 136.1576s
speed: 0.1319s/iter; left time: 121.5173s
speed: 0.1389s/iter; left time: 114.0600s
speed: 0.1306s/iter; left time: 94.1768s
speed: 0.1396s/iter; left time: 86.6974s
speed: 0.1352s/iter; left time: 70.4401s
speed: 0.1373s/iter; left time: 57.8087s
speed: 0.1379s/iter; left time: 44.2689s
speed: 0.1322s/iter; left time: 29.2235s
speed: 0.1308s/iter; left time: 15.8220s
speed: 0.1308s/iter; left time: 2.7468s
Epoch: 3 cost time: 245.10069799423218
Epoch: 3, Steps: 1820 | Train Loss: -48.7357392 Vali Loss: -47.5481951
EarlyStopping counter: 2 out of 3
Updating learning rate to 2.5e-05
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/MSL
dataset: MSL
input_c: 55
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 55
pretrained_model: 20
win_size: 100
-------------- End ----------------
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
test: (73729, 55)
train: (58317, 55)
======================TEST MODE======================
/home/username/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.0012788161612115718
pred: (73700,)
gt: (73700,)
pred: (73700,)
gt: (73700,)
Accuracy : 0.9863, Precision : 0.9186, Recall : 0.9545, F-score : 0.9362
2.4 SMAP
首次运行SMAP.sh
这次留了个心眼看看脚本第一行的GPU编号是否正确,没有问题,得到测试结果摘要如下:
代码语言:javascript复制======================TEST MODE======================
Threshold : 0.0005670388956787038
pred: (427600,)
gt: (427600,)
pred: (427600,)
gt: (427600,)
Accuracy : 0.9906, Precision : 0.9360, Recall : 0.9943, F-score : 0.9642
完整执行过程如下(跑得太久,机器都快烤熟了):
代码语言:javascript复制(Anomaly-Transformer) username@username-ubuntu:/media/username/folder/Dev/Anomaly-Transformer$ bash ./scripts/SMAP.sh
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/SMAP
dataset: SMAP
input_c: 25
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 25
pretrained_model: None
win_size: 100
-------------- End ----------------
test: (427617, 25)
train: (135183, 25)
test: (427617, 25)
train: (135183, 25)
test: (427617, 25)
train: (135183, 25)
test: (427617, 25)
train: (135183, 25)
======================TRAIN MODE======================
speed: 0.1343s/iter; left time: 1687.4161s
speed: 0.1316s/iter; left time: 1641.0434s
speed: 0.1304s/iter; left time: 1612.4711s
speed: 0.1304s/iter; left time: 1599.8954s
speed: 0.1315s/iter; left time: 1600.4497s
speed: 0.1304s/iter; left time: 1573.3904s
speed: 0.1306s/iter; left time: 1563.0526s
speed: 0.1313s/iter; left time: 1557.9986s
speed: 0.1308s/iter; left time: 1539.4388s
speed: 0.1302s/iter; left time: 1518.6118s
speed: 0.1312s/iter; left time: 1518.1523s
speed: 0.1305s/iter; left time: 1495.9211s
speed: 0.1306s/iter; left time: 1484.8276s
speed: 0.1306s/iter; left time: 1471.1267s
speed: 0.1297s/iter; left time: 1447.8968s
speed: 0.1304s/iter; left time: 1442.7176s
speed: 0.1299s/iter; left time: 1424.9521s
speed: 0.1303s/iter; left time: 1415.9097s
speed: 0.1309s/iter; left time: 1409.4994s
speed: 0.1311s/iter; left time: 1398.0175s
speed: 0.1318s/iter; left time: 1392.9594s
speed: 0.1302s/iter; left time: 1362.8479s
speed: 0.1371s/iter; left time: 1421.0785s
speed: 0.1292s/iter; left time: 1326.9539s
speed: 0.1303s/iter; left time: 1324.7232s
speed: 0.1308s/iter; left time: 1316.6065s
speed: 0.1309s/iter; left time: 1304.8822s
speed: 0.1306s/iter; left time: 1289.0181s
speed: 0.1322s/iter; left time: 1291.2752s
speed: 0.1315s/iter; left time: 1271.0320s
speed: 0.1302s/iter; left time: 1245.4013s
speed: 0.1310s/iter; left time: 1240.1241s
speed: 0.1309s/iter; left time: 1225.9448s
speed: 0.1300s/iter; left time: 1204.4843s
speed: 0.1308s/iter; left time: 1198.7496s
speed: 0.1329s/iter; left time: 1205.0089s
speed: 0.1319s/iter; left time: 1183.1681s
speed: 0.1301s/iter; left time: 1153.9812s
speed: 0.1295s/iter; left time: 1135.2198s
speed: 0.1307s/iter; left time: 1132.5606s
speed: 0.1312s/iter; left time: 1124.1417s
speed: 0.1296s/iter; left time: 1097.1383s
Epoch: 1 cost time: 553.0207221508026
Epoch: 1, Steps: 4222 | Train Loss: -47.6426614 Vali Loss: -48.1685601
Validation loss decreased (inf --> -48.168560). Saving model ...
Updating learning rate to 0.0001
speed: 5.5265s/iter; left time: 46118.9601s
speed: 0.1295s/iter; left time: 1067.8902s
speed: 0.1297s/iter; left time: 1056.0485s
speed: 0.1296s/iter; left time: 1042.8939s
speed: 0.1328s/iter; left time: 1055.0172s
speed: 0.1347s/iter; left time: 1056.7791s
speed: 0.1300s/iter; left time: 1006.6005s
speed: 0.1293s/iter; left time: 988.4494s
speed: 0.1292s/iter; left time: 975.1445s
speed: 0.1294s/iter; left time: 963.6841s
speed: 0.1292s/iter; left time: 948.7126s
speed: 0.1292s/iter; left time: 936.1060s
speed: 0.1291s/iter; left time: 922.7592s
speed: 0.1291s/iter; left time: 909.7682s
speed: 0.1291s/iter; left time: 896.7182s
speed: 0.1290s/iter; left time: 882.9915s
speed: 0.1291s/iter; left time: 870.9842s
speed: 0.1289s/iter; left time: 856.8340s
speed: 0.1289s/iter; left time: 843.7893s
speed: 0.1291s/iter; left time: 831.9244s
speed: 0.1292s/iter; left time: 819.9622s
speed: 0.1297s/iter; left time: 809.7022s
speed: 0.1293s/iter; left time: 794.2553s
speed: 0.1292s/iter; left time: 781.1323s
speed: 0.1292s/iter; left time: 767.8188s
speed: 0.1293s/iter; left time: 755.7132s
speed: 0.1292s/iter; left time: 742.2035s
speed: 0.1293s/iter; left time: 729.9284s
speed: 0.1294s/iter; left time: 717.5859s
speed: 0.1293s/iter; left time: 703.9006s
speed: 0.1292s/iter; left time: 690.3800s
speed: 0.1291s/iter; left time: 677.3184s
speed: 0.1293s/iter; left time: 665.2619s
speed: 0.1292s/iter; left time: 651.7931s
speed: 0.1292s/iter; left time: 638.8412s
speed: 0.1293s/iter; left time: 626.6065s
speed: 0.1292s/iter; left time: 612.8525s
speed: 0.1291s/iter; left time: 599.8719s
speed: 0.1292s/iter; left time: 587.1467s
speed: 0.1292s/iter; left time: 574.4164s
speed: 0.1293s/iter; left time: 561.6398s
speed: 0.1291s/iter; left time: 548.2016s
Epoch: 2 cost time: 546.9801330566406
Epoch: 2, Steps: 4222 | Train Loss: -48.5213919 Vali Loss: -48.2957534
EarlyStopping counter: 1 out of 3
Updating learning rate to 5e-05
speed: 5.4772s/iter; left time: 22582.6544s
speed: 0.1305s/iter; left time: 524.9768s
speed: 0.1301s/iter; left time: 510.4672s
speed: 0.1292s/iter; left time: 494.0773s
speed: 0.1291s/iter; left time: 480.7389s
speed: 0.1293s/iter; left time: 468.5919s
speed: 0.1292s/iter; left time: 455.1257s
speed: 0.1292s/iter; left time: 442.3313s
speed: 0.1293s/iter; left time: 429.8049s
speed: 0.1293s/iter; left time: 416.6019s
speed: 0.1291s/iter; left time: 403.3154s
speed: 0.1292s/iter; left time: 390.4252s
speed: 0.1291s/iter; left time: 377.3882s
speed: 0.1292s/iter; left time: 364.6556s
speed: 0.1293s/iter; left time: 352.1070s
speed: 0.1291s/iter; left time: 338.6508s
speed: 0.1292s/iter; left time: 325.8527s
speed: 0.1291s/iter; left time: 312.7774s
speed: 0.1292s/iter; left time: 300.1695s
speed: 0.1291s/iter; left time: 286.9356s
speed: 0.1291s/iter; left time: 274.0536s
speed: 0.1299s/iter; left time: 262.8002s
speed: 0.1324s/iter; left time: 254.5154s
speed: 0.1298s/iter; left time: 236.6313s
speed: 0.1328s/iter; left time: 228.8171s
speed: 0.1327s/iter; left time: 215.4497s
speed: 0.1304s/iter; left time: 198.6513s
speed: 0.1295s/iter; left time: 184.3195s
speed: 0.1299s/iter; left time: 171.8900s
speed: 0.1292s/iter; left time: 157.9532s
speed: 0.1290s/iter; left time: 144.8993s
speed: 0.1292s/iter; left time: 132.2070s
speed: 0.1293s/iter; left time: 119.3879s
speed: 0.1291s/iter; left time: 106.2423s
speed: 0.1291s/iter; left time: 93.3420s
speed: 0.1291s/iter; left time: 80.4567s
speed: 0.1292s/iter; left time: 67.5827s
speed: 0.1292s/iter; left time: 54.6509s
speed: 0.1293s/iter; left time: 41.7594s
speed: 0.1292s/iter; left time: 28.8161s
speed: 0.1292s/iter; left time: 15.8970s
speed: 0.1291s/iter; left time: 2.9699s
Epoch: 3 cost time: 547.1292362213135
Epoch: 3, Steps: 4222 | Train Loss: -48.6120459 Vali Loss: -48.3690009
EarlyStopping counter: 2 out of 3
Updating learning rate to 2.5e-05
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/SMAP
dataset: SMAP
input_c: 25
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 25
pretrained_model: 20
win_size: 100
-------------- End ----------------
test: (427617, 25)
train: (135183, 25)
test: (427617, 25)
train: (135183, 25)
test: (427617, 25)
train: (135183, 25)
test: (427617, 25)
train: (135183, 25)
======================TEST MODE======================
/home/username/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.0005670388956787038
pred: (427600,)
gt: (427600,)
pred: (427600,)
gt: (427600,)
Accuracy : 0.9906, Precision : 0.9360, Recall : 0.9943, F-score : 0.9642
2.5 SWaT
此数据集较为特殊,体现在其获取和使用上。在数据集获取上,根据协议无法与他人分享,需要自行申请。因此我前往iTrust官网申请,只选择SWaT数据集即可(填表链接),并等一了天得到邮件回复。在数据集使用上,作者没有编写训练脚本,因此需要自己对数据集进行处理并使用模型进行训练和测试。
拿到数据集后,根据论文附件K中Table 13推断论文使用的是2015年版本的数据集,即SWaT共享的Google Drive中,SWAT/SWaT.A1&A2_Dec 2015/Physical/
下的SWaT_dataset_Attack_v0.xlsx
(作测试集)和SWaT_dataset_Normal_v1.xlsx
(作训练集)。下面进行简单的处理。
数据集处理
代码语言:javascript复制# 1. 使用表格软件打开两者,分别删除第一行(第一行不是标题,只有P1,P2等字符,第二行的标题需要保留)后均保存为csv文件
# 2. 将两者用Python进行简单检查,转为numpy矩阵并保存为npy文件,代码如下:
import numpy as np
import pandas as pd
swat_train_pd = pd.read_csv('./dataset/SWaT/SWaT_Dataset_Normal_v1.csv')
swat_test_pd = pd.read_csv('./dataset/SWaT/SWaT_Dataset_Attack_v0.csv')
print(swat_train_pd.shape)
print(swat_test_pd.shape)
print(swat_test_pd['Normal/Attack'].unique())
print(swat_test_pd.head())
"""
(495000, 53)
(449919, 53)
['Normal' 'Attack' 'A ttack']
Timestamp FIT101 LIT101 ... P602 P603 Normal/Attack
0 28/12/2015 10:00:00 AM 2.427057 522.8467 ... 1 1 Normal
1 28/12/2015 10:00:01 AM 2.446274 522.8860 ... 1 1 Normal
2 28/12/2015 10:00:02 AM 2.489191 522.8467 ... 1 1 Normal
3 28/12/2015 10:00:03 AM 2.534350 522.9645 ... 1 1 Normal
4 28/12/2015 10:00:04 AM 2.569260 523.4748 ... 1 1 Normal
[5 rows x 53 columns]
"""
swat_test_pd = swat_test_pd.replace('Normal',0).replace('Attack',1).replace('A ttack',1)
swat_test_label_np = swat_test_pd.iloc[:,52].values
swat_test_np = swat_test_pd.drop([' Timestamp','Normal/Attack'], axis=1).values
swat_train_np = swat_train_pd.drop([' Timestamp','Normal/Attack'], axis=1).values
print(swat_train_np.shape)
print(swat_test_np.shape)
print(swat_test_label_np.shape)
"""
(495000, 51)
(449919, 51)
(449919,)
"""
np.save('./dataset/SWaT/swat_test_label.npy',swat_test_label_np)
np.save('./dataset/SWaT/swat_train.npy',swat_train_np)
np.save('./dataset/SWaT/swat_test.npy',swat_test_np)
然后新建训练测试脚本./scripts/SWaT.sh
,内容是从./scripts/Start.sh
复制的
export CUDA_VISIBLE_DEVICES=0
python main.py --anormly_ratio 0.5 --num_epochs 3 --batch_size 32 --mode train --dataset SWaT --data_path dataset/SWaT --input_c 51 --output_c 51
python main.py --anormly_ratio 0.1 --num_epochs 10 --batch_size 32 --mode test --dataset SWaT --data_path dataset/SWaT --input_c 51 --output_c 51 --pretrained_model 10
接着为SWaT数据集添加dataloder。编辑./data_factory/data_loader.py
,添加一个SwatSegLoader
类并修改原有get_loader_segment
函数:
'''
Loader for SWaT dataset
'''
class SwatSegLoader(object):
def __init__(self, data_path, win_size, step, mode="train"):
self.mode = mode
self.step = step
self.win_size = win_size
self.scaler = StandardScaler()
data = np.load(data_path "/swat_train.npy")
self.scaler.fit(data)
data = self.scaler.transform(data)
test_data = np.load(data_path "/swat_test.npy")
self.test = self.scaler.transform(test_data)
self.train = data
self.val = self.test
self.test_labels = np.load(data_path "/swat_test_label.npy")
print("test:", self.test.shape)
print("train:", self.train.shape)
def __len__(self):
if self.mode == "train":
return (self.train.shape[0] - self.win_size) // self.step 1
elif (self.mode == 'val'):
return (self.val.shape[0] - self.win_size) // self.step 1
elif (self.mode == 'test'):
return (self.test.shape[0] - self.win_size) // self.step 1
else:
return (self.test.shape[0] - self.win_size) // self.win_size 1
def __getitem__(self, index):
index = index * self.step
if self.mode == "train":
return np.float32(self.train[index:index self.win_size]), np.float32(self.test_labels[0:self.win_size])
elif (self.mode == 'val'):
return np.float32(self.val[index:index self.win_size]), np.float32(self.test_labels[0:self.win_size])
elif (self.mode == 'test'):
return np.float32(self.test[index:index self.win_size]), np.float32(
self.test_labels[index:index self.win_size])
else:
return np.float32(self.test[
index // self.step * self.win_size:index // self.step * self.win_size self.win_size]), np.float32(
self.test_labels[index // self.step * self.win_size:index // self.step * self.win_size self.win_size])
"""
Add a new line about the SWaT dataset
"""
def get_loader_segment(data_path, batch_size, win_size=100, step=100, mode='train', dataset='KDD'):
if (dataset == 'SMD'):
dataset = SMDSegLoader(data_path, win_size, step, mode)
elif (dataset == 'MSL'):
dataset = MSLSegLoader(data_path, win_size, 1, mode)
elif (dataset == 'SMAP'):
dataset = SMAPSegLoader(data_path, win_size, 1, mode)
elif (dataset == 'PSM'):
dataset = PSMSegLoader(data_path, win_size, 1, mode)
elif (dataset == 'SWaT'): # added this
dataset = SwatSegLoader(data_path, win_size, 1, mode)
shuffle = False
if mode == 'train':
shuffle = True
data_loader = DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=0)
return data_loader
首次运行SWaT.sh
得到测试结果摘要如下:
代码语言:javascript复制======================TEST MODE======================
Threshold : 0.0031170047065244427
pred: (449900,)
gt: (449900,)
pred: (449900,)
gt: (449900,)
Accuracy : 0.9775, Precision : 0.8841, Recall : 0.9371, F-score : 0.9099
完整执行过程如下(跑了大概两个小时):
代码语言:javascript复制(Anomaly-Transformer) username@ranlychan-ubuntu:/media/ranlychan/3E6E20236E1FD28F/Dev/Anomaly-Transformer$ bash ./scripts/SWaT.sh
------------ Options -------------
anormly_ratio: 0.1
batch_size: 32
data_path: dataset/SWaT
dataset: SWaT
input_c: 51
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 51
pretrained_model: 10
win_size: 100
-------------- End ----------------
test: (449919, 51)
train: (496800, 51)
test: (449919, 51)
train: (496800, 51)
test: (449919, 51)
train: (496800, 51)
test: (449919, 51)
train: (496800, 51)
======================TEST MODE======================
/home/ranlychan/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.0032192275498528246
pred: (449900,)
gt: (449900,)
pred: (449900,)
gt: (449900,)
Accuracy : 0.9771, Precision : 0.8965, Recall : 0.9172, F-score : 0.9067
(Anomaly-Transformer) ranlychan@ranlychan-ubuntu:/media/ranlychan/3E6E20236E1FD28F/Dev/Anomaly-Transformer$ bash ./scripts/SWaT.sh
------------ Options -------------
anormly_ratio: 0.5
batch_size: 32
data_path: dataset/SWaT
dataset: SWaT
input_c: 51
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 51
pretrained_model: None
win_size: 100
-------------- End ----------------
test: (449919, 51)
train: (495000, 51)
test: (449919, 51)
train: (495000, 51)
test: (449919, 51)
train: (495000, 51)
test: (449919, 51)
train: (495000, 51)
======================TRAIN MODE======================
speed: 0.1428s/iter; left time: 6612.5713s
speed: 0.1354s/iter; left time: 6253.0974s
speed: 0.1352s/iter; left time: 6230.7968s
speed: 0.1355s/iter; left time: 6233.4215s
speed: 0.1390s/iter; left time: 6378.5659s
speed: 0.1403s/iter; left time: 6425.6394s
speed: 0.1348s/iter; left time: 6161.5534s
speed: 0.1359s/iter; left time: 6194.7005s
speed: 0.1356s/iter; left time: 6168.4861s
speed: 0.1360s/iter; left time: 6174.7164s
speed: 0.1395s/iter; left time: 6319.8666s
speed: 0.1389s/iter; left time: 6276.0570s
speed: 0.1371s/iter; left time: 6183.6705s
speed: 0.1401s/iter; left time: 6302.9684s
speed: 0.1351s/iter; left time: 6067.7535s
speed: 0.1351s/iter; left time: 6050.1461s
speed: 0.1365s/iter; left time: 6101.5390s
speed: 0.1378s/iter; left time: 6144.6511s
speed: 0.1372s/iter; left time: 6104.3526s
speed: 0.1382s/iter; left time: 6137.7459s
speed: 0.1381s/iter; left time: 6117.2903s
speed: 0.1371s/iter; left time: 6061.2191s
speed: 0.1365s/iter; left time: 6021.1155s
speed: 0.1345s/iter; left time: 5915.7146s
speed: 0.1349s/iter; left time: 5921.9364s
speed: 0.1355s/iter; left time: 5933.2968s
speed: 0.1354s/iter; left time: 5914.8026s
speed: 0.1424s/iter; left time: 6210.5447s
speed: 0.1359s/iter; left time: 5911.6384s
speed: 0.1374s/iter; left time: 5964.3514s
speed: 0.1348s/iter; left time: 5838.2409s
speed: 0.1346s/iter; left time: 5816.1968s
speed: 0.1346s/iter; left time: 5802.6837s
speed: 0.1346s/iter; left time: 5788.3701s
speed: 0.1353s/iter; left time: 5804.4665s
speed: 0.1394s/iter; left time: 5966.4150s
speed: 0.1423s/iter; left time: 6074.2209s
speed: 0.1420s/iter; left time: 6049.9245s
speed: 0.1345s/iter; left time: 5715.0185s
speed: 0.1344s/iter; left time: 5698.0888s
speed: 0.1411s/iter; left time: 5968.1633s
speed: 0.1415s/iter; left time: 5970.2509s
speed: 0.1408s/iter; left time: 5928.4565s
speed: 0.1426s/iter; left time: 5990.2664s
speed: 0.1357s/iter; left time: 5686.5547s
speed: 0.1365s/iter; left time: 5704.3444s
speed: 0.1358s/iter; left time: 5664.3863s
speed: 0.1392s/iter; left time: 5791.4018s
speed: 0.1372s/iter; left time: 5693.4794s
speed: 0.1362s/iter; left time: 5638.4746s
speed: 0.1376s/iter; left time: 5682.1785s
speed: 0.1382s/iter; left time: 5695.7126s
speed: 0.1381s/iter; left time: 5673.8861s
speed: 0.1428s/iter; left time: 5854.1201s
speed: 0.1353s/iter; left time: 5535.4870s
speed: 0.1358s/iter; left time: 5538.6886s
speed: 0.1359s/iter; left time: 5530.9134s
speed: 0.1360s/iter; left time: 5520.0075s
speed: 0.1369s/iter; left time: 5545.7690s
speed: 0.1353s/iter; left time: 5466.8770s
speed: 0.1356s/iter; left time: 5465.3225s
speed: 0.1344s/iter; left time: 5403.5386s
speed: 0.1346s/iter; left time: 5398.9813s
speed: 0.1364s/iter; left time: 5455.0500s
speed: 0.1344s/iter; left time: 5362.2032s
speed: 0.1346s/iter; left time: 5357.8926s
speed: 0.1349s/iter; left time: 5356.4118s
speed: 0.1358s/iter; left time: 5375.5669s
speed: 0.1393s/iter; left time: 5503.1650s
speed: 0.1394s/iter; left time: 5492.4838s
speed: 0.1436s/iter; left time: 5641.9017s
speed: 0.1382s/iter; left time: 5417.8900s
speed: 0.1361s/iter; left time: 5320.7390s
speed: 0.1370s/iter; left time: 5342.9212s
speed: 0.1406s/iter; left time: 5470.8222s
speed: 0.1363s/iter; left time: 5289.7796s
speed: 0.1354s/iter; left time: 5240.4470s
speed: 0.1352s/iter; left time: 5218.9477s
speed: 0.1415s/iter; left time: 5446.3757s
speed: 0.1396s/iter; left time: 5360.8597s
speed: 0.1403s/iter; left time: 5371.5712s
speed: 0.1355s/iter; left time: 5174.8979s
speed: 0.1347s/iter; left time: 5132.1327s
speed: 0.1356s/iter; left time: 5153.9954s
speed: 0.1357s/iter; left time: 5144.1700s
speed: 0.1364s/iter; left time: 5156.1387s
speed: 0.1370s/iter; left time: 5164.2171s
speed: 0.1385s/iter; left time: 5208.6199s
speed: 0.1450s/iter; left time: 5438.2515s
speed: 0.1492s/iter; left time: 5580.7061s
speed: 0.1395s/iter; left time: 5203.9755s
speed: 0.1372s/iter; left time: 5103.0719s
speed: 0.1402s/iter; left time: 5202.6695s
speed: 0.1426s/iter; left time: 5274.6904s
speed: 0.1393s/iter; left time: 5141.1819s
speed: 0.1393s/iter; left time: 5126.7243s
speed: 0.1356s/iter; left time: 4976.0627s
speed: 0.1359s/iter; left time: 4975.5315s
speed: 0.1387s/iter; left time: 5061.0901s
speed: 0.1418s/iter; left time: 5162.7360s
speed: 0.1377s/iter; left time: 4997.3233s
speed: 0.1360s/iter; left time: 4922.3810s
speed: 0.1459s/iter; left time: 5267.9064s
speed: 0.1375s/iter; left time: 4949.4103s
speed: 0.1393s/iter; left time: 5001.8771s
speed: 0.1465s/iter; left time: 5245.6815s
speed: 0.1383s/iter; left time: 4938.3803s
speed: 0.1372s/iter; left time: 4884.7422s
speed: 0.1372s/iter; left time: 4871.4987s
speed: 0.1378s/iter; left time: 4877.6222s
speed: 0.1345s/iter; left time: 4748.5213s
speed: 0.1344s/iter; left time: 4730.7891s
speed: 0.1346s/iter; left time: 4725.0120s
speed: 0.1359s/iter; left time: 4756.4741s
speed: 0.1351s/iter; left time: 4715.7454s
speed: 0.1344s/iter; left time: 4676.1957s
speed: 0.1359s/iter; left time: 4716.7439s
speed: 0.1349s/iter; left time: 4668.0923s
speed: 0.1355s/iter; left time: 4673.7719s
speed: 0.1369s/iter; left time: 4708.6927s
speed: 0.1346s/iter; left time: 4615.7443s
speed: 0.1419s/iter; left time: 4851.2301s
speed: 0.1420s/iter; left time: 4842.0394s
speed: 0.1390s/iter; left time: 4726.7629s
speed: 0.1400s/iter; left time: 4745.2550s
speed: 0.1417s/iter; left time: 4789.7382s
speed: 0.1388s/iter; left time: 4677.9071s
speed: 0.1359s/iter; left time: 4566.2085s
speed: 0.1362s/iter; left time: 4561.5282s
speed: 0.1412s/iter; left time: 4717.2056s
speed: 0.1399s/iter; left time: 4657.4927s
speed: 0.1398s/iter; left time: 4639.9572s
speed: 0.1386s/iter; left time: 4586.4466s
speed: 0.1437s/iter; left time: 4742.9178s
speed: 0.1414s/iter; left time: 4653.5077s
speed: 0.1389s/iter; left time: 4555.4527s
speed: 0.1407s/iter; left time: 4600.7729s
speed: 0.1353s/iter; left time: 4410.3650s
speed: 0.1359s/iter; left time: 4415.5378s
speed: 0.1348s/iter; left time: 4368.9311s
speed: 0.1359s/iter; left time: 4389.8059s
speed: 0.1355s/iter; left time: 4362.4974s
speed: 0.1355s/iter; left time: 4348.9004s
speed: 0.1363s/iter; left time: 4360.6657s
speed: 0.1350s/iter; left time: 4307.7063s
speed: 0.1354s/iter; left time: 4305.2038s
speed: 0.1359s/iter; left time: 4309.3123s
speed: 0.1353s/iter; left time: 4276.3862s
speed: 0.1357s/iter; left time: 4274.6798s
speed: 0.1354s/iter; left time: 4249.9516s
speed: 0.1356s/iter; left time: 4245.4502s
speed: 0.1366s/iter; left time: 4261.3997s
speed: 0.1374s/iter; left time: 4272.8442s
speed: 0.1353s/iter; left time: 4194.5101s
Epoch: 1 cost time: 2127.7168984413147
Epoch: 1, Steps: 15466 | Train Loss: -48.4473046 Vali Loss: -47.3290840
Validation loss decreased (inf --> -47.329084). Saving model ...
Updating learning rate to 0.0001
speed: 6.2369s/iter; left time: 192301.2652s
speed: 0.1412s/iter; left time: 4340.9789s
speed: 0.1374s/iter; left time: 4207.7656s
speed: 0.1395s/iter; left time: 4258.3836s
speed: 0.1371s/iter; left time: 4172.0284s
speed: 0.1385s/iter; left time: 4202.1003s
speed: 0.1396s/iter; left time: 4219.4023s
speed: 0.1378s/iter; left time: 4153.6058s
speed: 0.1369s/iter; left time: 4110.4457s
speed: 0.1371s/iter; left time: 4103.2520s
speed: 0.1402s/iter; left time: 4181.8363s
speed: 0.1373s/iter; left time: 4081.6900s
speed: 0.1351s/iter; left time: 4003.4332s
speed: 0.1390s/iter; left time: 4105.8047s
speed: 0.1424s/iter; left time: 4190.9918s
speed: 0.1417s/iter; left time: 4156.5764s
speed: 0.1403s/iter; left time: 4102.5730s
speed: 0.1420s/iter; left time: 4138.0644s
speed: 0.1429s/iter; left time: 4147.9949s
speed: 0.1402s/iter; left time: 4055.5878s
speed: 0.1436s/iter; left time: 4141.6097s
speed: 0.1432s/iter; left time: 4115.6612s
speed: 0.1436s/iter; left time: 4112.7574s
speed: 0.1425s/iter; left time: 4066.4701s
speed: 0.1379s/iter; left time: 3921.2554s
speed: 0.1488s/iter; left time: 4216.4488s
speed: 0.1372s/iter; left time: 3873.5076s
speed: 0.1406s/iter; left time: 3955.3746s
speed: 0.1341s/iter; left time: 3759.9923s
speed: 0.1341s/iter; left time: 3745.7212s
speed: 0.1340s/iter; left time: 3730.7106s
speed: 0.1341s/iter; left time: 3717.9604s
speed: 0.1340s/iter; left time: 3703.4859s
speed: 0.1340s/iter; left time: 3690.3612s
speed: 0.1340s/iter; left time: 3677.0124s
speed: 0.1340s/iter; left time: 3662.8140s
speed: 0.1340s/iter; left time: 3650.3931s
speed: 0.1340s/iter; left time: 3636.0835s
speed: 0.1341s/iter; left time: 3624.2639s
speed: 0.1341s/iter; left time: 3611.4985s
speed: 0.1391s/iter; left time: 3732.2035s
speed: 0.1365s/iter; left time: 3649.8741s
speed: 0.1396s/iter; left time: 3719.0167s
speed: 0.1363s/iter; left time: 3616.9123s
speed: 0.1385s/iter; left time: 3659.8609s
speed: 0.1389s/iter; left time: 3657.7603s
speed: 0.1378s/iter; left time: 3614.8408s
speed: 0.1432s/iter; left time: 3741.8558s
speed: 0.1415s/iter; left time: 3683.3259s
speed: 0.1433s/iter; left time: 3714.9921s
speed: 0.1375s/iter; left time: 3552.5034s
speed: 0.1403s/iter; left time: 3610.4658s
speed: 0.1388s/iter; left time: 3559.0740s
speed: 0.1391s/iter; left time: 3551.4850s
speed: 0.1344s/iter; left time: 3419.0121s
speed: 0.1383s/iter; left time: 3502.4784s
speed: 0.1405s/iter; left time: 3544.0996s
speed: 0.1440s/iter; left time: 3619.6918s
speed: 0.1463s/iter; left time: 3663.1171s
speed: 0.1437s/iter; left time: 3582.2442s
speed: 0.1425s/iter; left time: 3538.2324s
speed: 0.1430s/iter; left time: 3537.9648s
speed: 0.1382s/iter; left time: 3405.0349s
speed: 0.1349s/iter; left time: 3308.9421s
speed: 0.1352s/iter; left time: 3304.2378s
speed: 0.1352s/iter; left time: 3289.0986s
speed: 0.1359s/iter; left time: 3292.5206s
speed: 0.1351s/iter; left time: 3260.5215s
speed: 0.1359s/iter; left time: 3266.8184s
speed: 0.1381s/iter; left time: 3305.8850s
speed: 0.1421s/iter; left time: 3387.8256s
speed: 0.1362s/iter; left time: 3233.5133s
speed: 0.1406s/iter; left time: 3323.1694s
speed: 0.1390s/iter; left time: 3270.9122s
speed: 0.1481s/iter; left time: 3470.9108s
speed: 0.1480s/iter; left time: 3452.5954s
speed: 0.1434s/iter; left time: 3332.1595s
speed: 0.1444s/iter; left time: 3340.4601s
speed: 0.1429s/iter; left time: 3290.3965s
speed: 0.1418s/iter; left time: 3251.0263s
speed: 0.1432s/iter; left time: 3269.5059s
speed: 0.1446s/iter; left time: 3286.1990s
speed: 0.1414s/iter; left time: 3200.7980s
speed: 0.1359s/iter; left time: 3061.4477s
speed: 0.1357s/iter; left time: 3043.1181s
speed: 0.1374s/iter; left time: 3067.6164s
speed: 0.1344s/iter; left time: 2988.2089s
speed: 0.1344s/iter; left time: 2974.6237s
speed: 0.1345s/iter; left time: 2962.6316s
speed: 0.1391s/iter; left time: 3051.0582s
speed: 0.1375s/iter; left time: 3002.8196s
speed: 0.1360s/iter; left time: 2955.7436s
speed: 0.1369s/iter; left time: 2962.3081s
speed: 0.1407s/iter; left time: 3030.2290s
speed: 0.1372s/iter; left time: 2940.8313s
speed: 0.1365s/iter; left time: 2911.8519s
speed: 0.1359s/iter; left time: 2885.3581s
speed: 0.1359s/iter; left time: 2871.7553s
speed: 0.1348s/iter; left time: 2835.1846s
speed: 0.1355s/iter; left time: 2837.3081s
speed: 0.1349s/iter; left time: 2810.6872s
speed: 0.1380s/iter; left time: 2860.7424s
speed: 0.1382s/iter; left time: 2850.8490s
speed: 0.1380s/iter; left time: 2833.0666s
speed: 0.1358s/iter; left time: 2775.4763s
speed: 0.1364s/iter; left time: 2772.4910s
speed: 0.1417s/iter; left time: 2866.6913s
speed: 0.1408s/iter; left time: 2834.4955s
speed: 0.1414s/iter; left time: 2833.6041s
speed: 0.1386s/iter; left time: 2761.7363s
speed: 0.1373s/iter; left time: 2722.3473s
speed: 0.1450s/iter; left time: 2861.6037s
speed: 0.1379s/iter; left time: 2707.0912s
speed: 0.1358s/iter; left time: 2652.5041s
speed: 0.1386s/iter; left time: 2694.2524s
speed: 0.1394s/iter; left time: 2694.5749s
speed: 0.1407s/iter; left time: 2706.0995s
speed: 0.1428s/iter; left time: 2731.5554s
speed: 0.1428s/iter; left time: 2718.7514s
speed: 0.1411s/iter; left time: 2670.9368s
speed: 0.1419s/iter; left time: 2673.1494s
speed: 0.1371s/iter; left time: 2569.1856s
speed: 0.1363s/iter; left time: 2540.2892s
speed: 0.1393s/iter; left time: 2582.3330s
speed: 0.1404s/iter; left time: 2588.2281s
speed: 0.1390s/iter; left time: 2547.5025s
speed: 0.1358s/iter; left time: 2475.4478s
speed: 0.1347s/iter; left time: 2442.8927s
speed: 0.1389s/iter; left time: 2504.9989s
speed: 0.1393s/iter; left time: 2498.3219s
speed: 0.1385s/iter; left time: 2469.3112s
speed: 0.1439s/iter; left time: 2551.8338s
speed: 0.1393s/iter; left time: 2455.4148s
speed: 0.1361s/iter; left time: 2385.9529s
speed: 0.1380s/iter; left time: 2405.8499s
speed: 0.1386s/iter; left time: 2401.7565s
speed: 0.1405s/iter; left time: 2421.6689s
speed: 0.1346s/iter; left time: 2305.7041s
speed: 0.1358s/iter; left time: 2312.4812s
speed: 0.1366s/iter; left time: 2313.5609s
speed: 0.1446s/iter; left time: 2433.9046s
speed: 0.1391s/iter; left time: 2327.8682s
speed: 0.1357s/iter; left time: 2257.7770s
speed: 0.1372s/iter; left time: 2267.6875s
speed: 0.1361s/iter; left time: 2236.3395s
speed: 0.1362s/iter; left time: 2224.1642s
speed: 0.1359s/iter; left time: 2205.6602s
speed: 0.1355s/iter; left time: 2185.4923s
speed: 0.1360s/iter; left time: 2180.5024s
speed: 0.1358s/iter; left time: 2164.1690s
speed: 0.1347s/iter; left time: 2132.9385s
speed: 0.1351s/iter; left time: 2124.7418s
speed: 0.1361s/iter; left time: 2127.1795s
speed: 0.1354s/iter; left time: 2103.8047s
Epoch: 2 cost time: 2142.760348558426
Epoch: 2, Steps: 15466 | Train Loss: -48.7614085 Vali Loss: -47.4089206
Validation loss decreased (-47.329084 --> -47.408921). Saving model ...
Updating learning rate to 5e-05
speed: 6.1778s/iter; left time: 94934.8721s
speed: 0.1406s/iter; left time: 2146.9605s
speed: 0.1405s/iter; left time: 2131.2590s
speed: 0.1406s/iter; left time: 2118.3086s
speed: 0.1407s/iter; left time: 2105.8900s
speed: 0.1407s/iter; left time: 2091.9465s
speed: 0.1406s/iter; left time: 2076.6571s
speed: 0.1406s/iter; left time: 2062.1350s
speed: 0.1404s/iter; left time: 2044.6462s
speed: 0.1415s/iter; left time: 2047.4681s
speed: 0.1482s/iter; left time: 2129.4256s
speed: 0.1492s/iter; left time: 2127.9783s
speed: 0.1365s/iter; left time: 1934.1541s
speed: 0.1399s/iter; left time: 1968.6168s
speed: 0.1400s/iter; left time: 1955.1173s
speed: 0.1475s/iter; left time: 2045.0873s
speed: 0.1462s/iter; left time: 2012.1008s
speed: 0.1486s/iter; left time: 2030.5059s
speed: 0.1392s/iter; left time: 1889.0985s
speed: 0.1359s/iter; left time: 1830.0555s
speed: 0.1362s/iter; left time: 1821.0789s
speed: 0.1380s/iter; left time: 1830.8140s
speed: 0.1400s/iter; left time: 1842.7255s
speed: 0.1408s/iter; left time: 1840.0198s
speed: 0.1404s/iter; left time: 1821.1826s
speed: 0.1390s/iter; left time: 1788.3899s
speed: 0.1352s/iter; left time: 1725.9144s
speed: 0.1353s/iter; left time: 1713.4649s
speed: 0.1352s/iter; left time: 1699.5077s
speed: 0.1351s/iter; left time: 1683.8779s
speed: 0.1349s/iter; left time: 1668.2950s
speed: 0.1350s/iter; left time: 1656.3314s
speed: 0.1349s/iter; left time: 1641.9323s
speed: 0.1358s/iter; left time: 1638.1283s
speed: 0.1408s/iter; left time: 1684.5690s
speed: 0.1397s/iter; left time: 1658.0442s
speed: 0.1364s/iter; left time: 1605.3649s
speed: 0.1355s/iter; left time: 1581.1990s
speed: 0.1354s/iter; left time: 1565.9528s
speed: 0.1353s/iter; left time: 1551.1118s
speed: 0.1355s/iter; left time: 1539.6940s
speed: 0.1426s/iter; left time: 1606.9790s
speed: 0.1432s/iter; left time: 1599.1447s
speed: 0.1396s/iter; left time: 1544.6739s
speed: 0.1375s/iter; left time: 1508.0367s
speed: 0.1357s/iter; left time: 1474.7991s
speed: 0.1387s/iter; left time: 1493.3745s
speed: 0.1369s/iter; left time: 1460.2498s
speed: 0.1450s/iter; left time: 1532.1255s
speed: 0.1354s/iter; left time: 1417.6454s
speed: 0.1367s/iter; left time: 1417.3438s
speed: 0.1383s/iter; left time: 1419.4605s
speed: 0.1394s/iter; left time: 1417.0308s
speed: 0.1381s/iter; left time: 1389.8998s
speed: 0.1359s/iter; left time: 1354.2720s
speed: 0.1379s/iter; left time: 1360.3001s
speed: 0.1400s/iter; left time: 1366.8987s
speed: 0.1357s/iter; left time: 1311.7372s
speed: 0.1355s/iter; left time: 1296.3165s
speed: 0.1400s/iter; left time: 1325.6356s
speed: 0.1396s/iter; left time: 1307.1830s
speed: 0.1438s/iter; left time: 1332.1646s
speed: 0.1425s/iter; left time: 1306.2933s
speed: 0.1405s/iter; left time: 1273.5351s
speed: 0.1383s/iter; left time: 1240.3545s
speed: 0.1399s/iter; left time: 1240.1732s
speed: 0.1349s/iter; left time: 1182.6134s
speed: 0.1357s/iter; left time: 1176.3826s
speed: 0.1369s/iter; left time: 1172.9671s
speed: 0.1396s/iter; left time: 1181.7322s
speed: 0.1503s/iter; left time: 1257.1756s
speed: 0.1516s/iter; left time: 1253.5654s
speed: 0.1357s/iter; left time: 1108.4112s
speed: 0.1349s/iter; left time: 1088.4797s
speed: 0.1383s/iter; left time: 1102.0619s
speed: 0.1379s/iter; left time: 1084.9288s
speed: 0.1415s/iter; left time: 1098.7484s
speed: 0.1359s/iter; left time: 1042.0906s
speed: 0.1380s/iter; left time: 1044.4410s
speed: 0.1410s/iter; left time: 1052.5578s
speed: 0.1362s/iter; left time: 1003.2852s
speed: 0.1407s/iter; left time: 1022.6825s
speed: 0.1375s/iter; left time: 985.7831s
speed: 0.1369s/iter; left time: 967.7417s
speed: 0.1386s/iter; left time: 965.7697s
speed: 0.1374s/iter; left time: 943.5992s
speed: 0.1373s/iter; left time: 929.1964s
speed: 0.1411s/iter; left time: 940.4838s
speed: 0.1358s/iter; left time: 891.6402s
speed: 0.1361s/iter; left time: 880.2868s
speed: 0.1361s/iter; left time: 866.7270s
speed: 0.1399s/iter; left time: 876.9626s
speed: 0.1391s/iter; left time: 857.7881s
speed: 0.1390s/iter; left time: 843.3105s
speed: 0.1417s/iter; left time: 845.6014s
speed: 0.1393s/iter; left time: 817.4279s
speed: 0.1448s/iter; left time: 835.1416s
speed: 0.1418s/iter; left time: 803.5788s
speed: 0.1396s/iter; left time: 777.3048s
speed: 0.1352s/iter; left time: 739.0622s
speed: 0.1342s/iter; left time: 720.3296s
speed: 0.1356s/iter; left time: 714.3432s
speed: 0.1349s/iter; left time: 697.1035s
speed: 0.1357s/iter; left time: 687.6707s
speed: 0.1371s/iter; left time: 680.7852s
speed: 0.1348s/iter; left time: 656.0860s
speed: 0.1394s/iter; left time: 664.3335s
speed: 0.1424s/iter; left time: 664.4477s
speed: 0.1430s/iter; left time: 652.9596s
speed: 0.1432s/iter; left time: 639.7950s
speed: 0.1415s/iter; left time: 618.0999s
speed: 0.1405s/iter; left time: 599.4433s
speed: 0.1417s/iter; left time: 590.2657s
speed: 0.1402s/iter; left time: 570.0331s
speed: 0.1411s/iter; left time: 559.8401s
speed: 0.1404s/iter; left time: 543.0194s
speed: 0.1401s/iter; left time: 527.8371s
speed: 0.1402s/iter; left time: 513.9767s
speed: 0.1402s/iter; left time: 500.0044s
speed: 0.1385s/iter; left time: 480.0465s
speed: 0.1368s/iter; left time: 460.6511s
speed: 0.1387s/iter; left time: 453.0378s
speed: 0.1385s/iter; left time: 438.5996s
speed: 0.1406s/iter; left time: 431.1120s
speed: 0.1376s/iter; left time: 408.1366s
speed: 0.1430s/iter; left time: 409.8844s
speed: 0.1467s/iter; left time: 405.8109s
speed: 0.1465s/iter; left time: 390.8402s
speed: 0.1357s/iter; left time: 348.3139s
speed: 0.1357s/iter; left time: 334.8425s
speed: 0.1374s/iter; left time: 325.2861s
speed: 0.1424s/iter; left time: 322.7762s
speed: 0.1408s/iter; left time: 305.0053s
speed: 0.1422s/iter; left time: 293.8833s
speed: 0.1435s/iter; left time: 282.3321s
speed: 0.1438s/iter; left time: 268.4056s
speed: 0.1446s/iter; left time: 255.5926s
speed: 0.1386s/iter; left time: 230.9797s
speed: 0.1357s/iter; left time: 212.7075s
speed: 0.1370s/iter; left time: 201.0489s
speed: 0.1391s/iter; left time: 190.1014s
speed: 0.1348s/iter; left time: 170.7725s
speed: 0.1383s/iter; left time: 161.4011s
speed: 0.1370s/iter; left time: 146.2138s
speed: 0.1350s/iter; left time: 130.5128s
speed: 0.1350s/iter; left time: 117.0379s
speed: 0.1348s/iter; left time: 103.3958s
speed: 0.1349s/iter; left time: 89.9780s
speed: 0.1350s/iter; left time: 76.5349s
speed: 0.1350s/iter; left time: 63.0486s
speed: 0.1350s/iter; left time: 49.5276s
speed: 0.1349s/iter; left time: 36.0312s
speed: 0.1349s/iter; left time: 22.5222s
speed: 0.1350s/iter; left time: 9.0454s
Epoch: 3 cost time: 2149.257043838501
Epoch: 3, Steps: 15466 | Train Loss: -48.9121188 Vali Loss: -47.4772334
EarlyStopping counter: 1 out of 3
Updating learning rate to 2.5e-05
------------ Options -------------
anormly_ratio: 0.1
batch_size: 32
data_path: dataset/SWaT
dataset: SWaT
input_c: 51
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 51
pretrained_model: 10
win_size: 100
-------------- End ----------------
test: (449919, 51)
train: (495000, 51)
test: (449919, 51)
train: (495000, 51)
test: (449919, 51)
train: (495000, 51)
test: (449919, 51)
train: (495000, 51)
======================TEST MODE======================
/home/ranlychan/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.0031170047065244427
pred: (449900,)
gt: (449900,)
pred: (449900,)
gt: (449900,)
Accuracy : 0.9775, Precision : 0.8841, Recall : 0.9371, F-score : 0.9099
NeurIPS-TS
这个Bencmark比较特殊,需要搭建测试平台:https://github.com/datamllab/tods
使用系统的Python[失败]
按照步骤克隆仓库并运行pip install -e .
时出现报错,一些包安装存在问题:
Getting requirements to build wheel ... error
error: subprocess-exited-with-error
× Getting requirements to build wheel did not run successfully.
│ exit code: 1
╰─> [154 lines of output]
<string>:15: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html
<string>:51: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
<string>:54: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
<string>:51: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
performance hint: statsmodels/tsa/regime_switching/_hamilton_filter.pyx:83:5: Exception check on 'shamilton_filter_log_iteration' will always require the GIL to be acquired.
Possible solutions:
1. Declare the function as 'noexcept' if you control the definition and you're sure you don't want the function to raise exceptions.
2. Use an 'int' return type on the function to allow an error code to be returned.
问题定位和解决:安装依赖statsmodels==0.11.1
出现问题,尝试降低版本,在根目录的setup.py
中修改statsmodels==0.11.0rc1
,再次执行pip install -e .
时成功了。
新的问题:
代码语言:javascript复制ERROR: Could not find a version that satisfies the requirement tensorflow==2.4 (from tods) (from versions: 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0rc0, 2.6.0rc1, 2.6.0rc2, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0rc0, 2.7.0rc1, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0rc0, 2.8.0rc1, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0rc0, 2.9.0rc1, 2.9.0rc2, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0rc0, 2.10.0rc1, 2.10.0rc2, 2.10.0rc3, 2.10.0, 2.10.1, 2.11.0rc0, 2.11.0rc1, 2.11.0rc2, 2.11.0, 2.11.1, 2.12.0rc0, 2.12.0rc1, 2.12.0, 2.12.1, 2.13.0rc0, 2.13.0rc1, 2.13.0rc2, 2.13.0, 2.13.1, 2.14.0rc0, 2.14.0rc1, 2.14.0, 2.14.1, 2.15.0rc0, 2.15.0rc1, 2.15.0, 2.15.0.post1)
ERROR: No matching distribution found for tensorflow==2.4
问题定位和解决:tensorflow 2.4
版本找不着,尝试在setup.py
中修改为tensorflow==2.5
新的问题:
代码语言:javascript复制ERROR: Could not find a version that satisfies the requirement keras-nightly~=2.5.0.dev (from tensorflow) (from versions: none)
ERROR: No matching distribution found for keras-nightly~=2.5.0.dev
问题定位和解决:keras-nightly~=2.5.0.dev
也找不着,手动去pypi.org
官网下载安装https://pypi.org/project/keras-nightly/#history,我下载了这个的whl:https://pypi.org/project/keras-nightly/2.5.0.dev2021032900/,在终端使用pip install ./keras_nightly-2.5.0.dev2021032900-py2.py3-none-any.whl
,成功。
最后似乎没有完全成功?:
代码语言:javascript复制ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
spyder 5.3.3 requires pyqt5<5.16, which is not installed.
spyder 5.3.3 requires pyqtwebengine<5.16, which is not installed.
daal4py 2021.6.0 requires daal==2021.4.0, which is not installed.
anaconda-project 0.11.1 requires ruamel-yaml, which is not installed.
pylint 2.14.5 requires typing-extensions>=3.10.0; python_version < "3.10", but you have typing-extensions 3.7.4.3 which is incompatible.
imageio 2.19.3 requires pillow>=8.3.2, but you have pillow 7.1.2 which is incompatible.
conda-repo-cli 1.0.20 requires clyent==1.2.1, but you have clyent 1.2.2 which is incompatible.
conda-repo-cli 1.0.20 requires nbformat==5.4.0, but you have nbformat 5.5.0 which is incompatible.
conda-repo-cli 1.0.20 requires PyYAML==6.0, but you have pyyaml 5.4.1 which is incompatible.
conda-repo-cli 1.0.20 requires requests==2.28.1, but you have requests 2.26.0 which is incompatible.
bokeh 2.4.3 requires typing-extensions>=3.10.0, but you have typing-extensions 3.7.4.3 which is incompatible.
black 22.6.0 requires typing-extensions>=3.10.0.0; python_version < "3.10", but you have typing-extensions 3.7.4.3 which is incompatible.
astroid 2.11.7 requires typing-extensions>=3.10; python_version < "3.10", but you have typing-extensions 3.7.4.3 which is incompatible.
Successfully installed GitPython-3.1.24 absl-py-0.15.0 aiosignal-1.3.1 astunparse-1.6.3 cachetools-5.3.2 combo-0.1.3 custom-inherit-2.3.2 dateparser-1.1.8 flatbuffers-1.12 frozendict-1.2 frozenlist-1.4.0 gast-0.4.0 gitdb-4.0.11 google-auth-2.25.1 google-auth-oauthlib-0.4.6 google-pasta-0.2.0 gputil-1.4.0 grpcio-1.34.1 grpcio-testing-1.32.0 grpcio-tools-1.34.1 h5py-3.1.0 jsonpath-ng-1.5.3 jsonschema-4.0.1 keras-2.4.0 keras-preprocessing-1.1.2 liac-arff-2.5.0 more-itertools-8.5.0 nimfa-1.4.0 numpy-1.19.5 oauthlib-3.2.2 openml-0.11.0 opt-einsum-3.3.0 pandas-1.3.4 pillow-7.1.2 protobuf-3.20.3 pyarrow-14.0.1 pyod-1.0.5 pytypes-1.0b10 pyyaml-5.4.1 ray-2.8.1 requests-2.26.0 requests-oauthlib-1.3.1 rfc3339-validator-0.1.4 rfc3986-validator-0.1.1 rsa-4.9 scikit-learn-0.24.2 scipy-1.7.1 simplejson-3.12.0 six-1.15.0 smmap-5.0.1 statsmodels-0.11.0rc1 stumpy-1.4.0 tamu_axolotl-2021.2.11.1 tamu_d3m-2022.5.23 tensorboard-2.11.2 tensorboard-data-server-0.6.1 tensorboard-plugin-wit-1.8.1 tensorboardX-2.6.2.2 tensorflow-2.5.0 tensorflow-estimator-2.5.0 termcolor-1.1.0 tods-0.0.2 typing-extensions-3.7.4.3 typing-inspect-0.7.1 tzlocal-5.2 webcolors-1.11.1 wrapt-1.12.1 xgboost-2.0.2 xmltodict-0.13.0
使用Conda虚拟环境
在Pycharm中打开项目并新建conda interpreter, python 版本为3.8 (项目要求 Python 3.6 && pip 19 )
将根目录的setup.py
更改过的依赖项版本还原
打开终端并确保在tods根目录且使用了conda的虚拟环境python,执行pip install -e .
这次安装无伤速通!总之就是以后再也不要用系统的python interpreter跑项目了!希望有时间能打包个docker镜像造福人类。
在根目录新建test_example.py
如下并运行:
import pandas as pd
from tods import schemas as schemas_utils
from tods import generate_dataset, evaluate_pipeline
table_path = 'datasets/anomaly/raw_data/yahoo_sub_5.csv'
target_index = 6 # what column is the target
metric = 'F1_MACRO' # F1 on both label 0 and 1
# Read data and generate dataset
df = pd.read_csv(table_path)
dataset = generate_dataset(df, target_index)
# Load the default pipeline
pipeline = schemas_utils.load_default_pipeline()
# Run the pipeline
pipeline_result = evaluate_pipeline(dataset, pipeline, metric)
print(pipeline_result)
成功输出结果。
代码语言:javascript复制{'method_called': 'evaluate',
'outputs': "[{'outputs.0': d3mIndex anomaly"
'0 0 0'
'1 1 0'
'2 2 0'
'3 3 0'
'4 4 0'
'... ... ...'
'1395 1395 0'
'1396 1396 0'
'1397 1397 1'
'1398 1398 1'
'1399 1399 0'
''
"[1400 rows x 2 columns]}, {'outputs.0': d3mIndex anomaly"
'0 0 0'
'1 1 0'
'2 2 0'
'3 3 0'
'4 4 0'
'... ... ...'
'1395 1395 0'
'1396 1396 0'
'1397 1397 1'
'1398 1398 1'
'1399 1399 0'
''
'[1400 rows x 2 columns]}]',
'pipeline': '<d3m.metadata.pipeline.Pipeline object at 0x7fcab1e73cd0>',
'scores': ' metric value normalized randomSeed fold'
'0 F1_MACRO 0.708549 0.708549 0 0',
'status': 'COMPLETED'}
2.6 总结
Dataset Metrics | Accuracy | Precision | Recall | F1-score |
---|---|---|---|---|
SMD / Ours | 99.26 | 89.27 | 93.29 | 91.24 |
SMD / Paper | 89.40 | 95.45 | 92.33 | |
MSL / Ours | 98.63 | 91.86 | 95.45 | 93.62 |
MSL / Paper | 92.09 | 95.15 | 93.59 | |
SMAP / Ours | 99.06 | 93.60 | 99.43 | 96.42 |
SMAP / Paper | 94.13 | 99.40 | 96.69 | |
SWaT / Ours | 97.75 | 88.41 | 93.71 | 90.99 |
SWaT / Paper | 91.55 | 96.73 | 94.07 | |
PSM / Ours | 98.82 | 96.97 | 98.83 | 97.89 |
PSM / Paper | 96.91 | 98.90 | 97.89 |
可见所有数据集与论文第4章Table 1所给数据并无较大出入,且所有F1-Score仍然如Table 1标注所示,领先于其余对比算法。
UCR dataset
下载于:https://compete.hexagon-ml.com/media/data/multi-dataset-time-series-anomaly-detection-39/data.zip
3. 分析与设计
一些思考:能不能跳出时间序列的限制,例如将代码文本作为输入,输出其是否存在异常。首先为了能让代码片段输入,肯定需要进行一定的编码,例如现在大模型流行使用的tokenizer方法。但tokenizer是将单个词映射为定长向量,而一个代码片通常由多个可视为词的符号组成,且词之间具有严密的逻辑关系。
3.1 Anomaly ratio $r$ 及其局限性
论文为每个数据集设定了不同的异常比例r,用于确定一个Anomaly Score 阈值delta,使得验证集的异常点占比达到预设的r. 这存在需要人工经验取值的问题,况且异常比例r在验证集、训练集和测试集的情况很有可能存在不同,我认为这主要是由于时间序列的连续特性无法进行随机采样得到验证集导致的,论文代码中对于验证集的选取也受限于连续特性。另一方面,论文方法是无监督方法,设置阈值是无监督异常检测任务中难以避免的一个操作,而从这个角度进行基于标签数据的有监督学习改进是困难的,因为现实中的时序异常数据很难打标签。
3.1.1 尝试通过改变重建损失计算利用标签数据训练
简单二分策略的使用混合重建损失的结果:
代码语言:javascript复制Anomaly Ratio : 50.0
Threshold : 0.0
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.5032, Precision : 0.7028, Recall : 0.2204, F-score : 0.3356
Threshold : 0.0
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.5032, Precision : 0.7028, Recall : 0.2204, F-score : 0.3356
3.2 对网络异常检测数据的适用性
3.2.1 在NSL-KDD数据集上训练与测试
简单二分策略
将normal标签设为0,其余均为1,然后在不同的anomaly ratio下测试算法在NSLKDD数据集上的效果。
r=0.5%
代码语言:javascript复制(Anomaly-Transformer) ranlychan@ranlychan-ubuntu:/media/ranlychan/3E6E20236E1FD28F/Dev/Anomaly-Transformer$ bash ./scripts/NSLKDD.sh
------------ Options -------------
anormly_ratio: 0.5
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
======================TRAIN MODE======================
------------ Options -------------
anormly_ratio: 0.5
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD
input_c: 122
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 122
pretrained_model: 10
win_size: 100
-------------- End ----------------
======================TEST MODE======================
/home/ranlychan/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.02469959240406773
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.4585, Precision : 0.9481, Recall : 0.0514, F-score : 0.0975
r=1.0%
代码语言:javascript复制(Anomaly-Transformer) ranlychan@ranlychan-ubuntu:/media/ranlychan/3E6E20236E1FD28F/Dev/Anomaly-Transformer$ bash ./scripts/NSLKDD.sh
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
======================TRAIN MODE======================
speed: 0.1369s/iter; left time: 1601.7550s
speed: 0.1303s/iter; left time: 1512.0029s
speed: 0.1306s/iter; left time: 1502.6880s
speed: 0.1307s/iter; left time: 1490.6938s
speed: 0.1308s/iter; left time: 1478.8884s
speed: 0.1308s/iter; left time: 1465.4615s
speed: 0.1308s/iter; left time: 1452.1905s
speed: 0.1309s/iter; left time: 1440.6744s
speed: 0.1313s/iter; left time: 1431.1096s
speed: 0.1313s/iter; left time: 1418.0322s
speed: 0.1312s/iter; left time: 1404.4908s
speed: 0.1313s/iter; left time: 1392.5284s
speed: 0.1313s/iter; left time: 1378.5787s
speed: 0.1313s/iter; left time: 1365.6873s
speed: 0.1312s/iter; left time: 1351.8481s
speed: 0.1313s/iter; left time: 1339.4321s
speed: 0.1312s/iter; left time: 1325.7825s
speed: 0.1312s/iter; left time: 1312.7482s
speed: 0.1312s/iter; left time: 1299.0108s
speed: 0.1313s/iter; left time: 1286.7188s
speed: 0.1312s/iter; left time: 1273.0868s
speed: 0.1312s/iter; left time: 1260.0926s
speed: 0.1316s/iter; left time: 1250.9483s
speed: 0.1335s/iter; left time: 1254.8993s
speed: 0.1328s/iter; left time: 1235.7682s
speed: 0.1308s/iter; left time: 1204.1539s
speed: 0.1309s/iter; left time: 1191.3958s
speed: 0.1309s/iter; left time: 1178.2278s
speed: 0.1322s/iter; left time: 1176.9927s
speed: 0.1315s/iter; left time: 1157.5977s
speed: 0.1315s/iter; left time: 1144.1452s
speed: 0.1314s/iter; left time: 1130.5234s
speed: 0.1314s/iter; left time: 1117.5005s
speed: 0.1314s/iter; left time: 1104.2098s
speed: 0.1314s/iter; left time: 1090.8631s
speed: 0.1315s/iter; left time: 1078.5724s
speed: 0.1314s/iter; left time: 1064.4714s
speed: 0.1315s/iter; left time: 1052.1539s
speed: 0.1353s/iter; left time: 1069.2737s
Epoch: 1 cost time: 517.9919922351837
Epoch: 1, Steps: 3934 | Train Loss: -47.0414631 Vali Loss: -47.4802924
Validation loss decreased (inf --> -47.480292). Saving model ...
Updating learning rate to 0.0001
speed: 0.4840s/iter; left time: 3759.9627s
speed: 0.1332s/iter; left time: 1021.6347s
speed: 0.1323s/iter; left time: 1001.5881s
speed: 0.1319s/iter; left time: 985.3198s
speed: 0.1345s/iter; left time: 990.9520s
speed: 0.1343s/iter; left time: 976.3390s
speed: 0.1390s/iter; left time: 996.3020s
speed: 0.1346s/iter; left time: 951.4199s
speed: 0.1360s/iter; left time: 947.8869s
speed: 0.1341s/iter; left time: 921.2710s
speed: 0.1379s/iter; left time: 933.7204s
speed: 0.1326s/iter; left time: 883.9982s
speed: 0.1394s/iter; left time: 915.8344s
speed: 0.1355s/iter; left time: 876.6080s
speed: 0.1428s/iter; left time: 909.5229s
speed: 0.1436s/iter; left time: 900.0828s
speed: 0.1437s/iter; left time: 886.3455s
speed: 0.1433s/iter; left time: 869.4626s
speed: 0.1445s/iter; left time: 862.6468s
speed: 0.1449s/iter; left time: 850.2270s
speed: 0.1418s/iter; left time: 818.0399s
speed: 0.1367s/iter; left time: 774.7034s
speed: 0.1367s/iter; left time: 761.4599s
speed: 0.1367s/iter; left time: 747.4475s
speed: 0.1364s/iter; left time: 732.2058s
speed: 0.1368s/iter; left time: 721.0366s
speed: 0.1367s/iter; left time: 706.8142s
speed: 0.1367s/iter; left time: 693.1174s
speed: 0.1367s/iter; left time: 679.1568s
speed: 0.1367s/iter; left time: 665.7158s
speed: 0.1368s/iter; left time: 652.5808s
speed: 0.1367s/iter; left time: 638.4532s
speed: 0.1362s/iter; left time: 622.4852s
speed: 0.1364s/iter; left time: 609.4713s
speed: 0.1364s/iter; left time: 595.9573s
speed: 0.1364s/iter; left time: 582.4890s
speed: 0.1364s/iter; left time: 568.5825s
speed: 0.1364s/iter; left time: 554.9945s
speed: 0.1365s/iter; left time: 541.9608s
Epoch: 2 cost time: 539.6562712192535
Epoch: 2, Steps: 3934 | Train Loss: -48.5144279 Vali Loss: -48.1329151
EarlyStopping counter: 1 out of 3
Updating learning rate to 5e-05
speed: 0.4813s/iter; left time: 1845.6853s
speed: 0.1364s/iter; left time: 509.2899s
speed: 0.1362s/iter; left time: 495.1138s
speed: 0.1364s/iter; left time: 482.0215s
speed: 0.1365s/iter; left time: 468.8174s
speed: 0.1364s/iter; left time: 455.0160s
speed: 0.1364s/iter; left time: 441.3130s
speed: 0.1364s/iter; left time: 427.6231s
speed: 0.1364s/iter; left time: 414.0394s
speed: 0.1364s/iter; left time: 400.4002s
speed: 0.1363s/iter; left time: 386.2983s
speed: 0.1363s/iter; left time: 372.6786s
speed: 0.1364s/iter; left time: 359.5014s
speed: 0.1364s/iter; left time: 345.8320s
speed: 0.1364s/iter; left time: 332.1094s
speed: 0.1363s/iter; left time: 318.1958s
speed: 0.1364s/iter; left time: 304.7477s
speed: 0.1362s/iter; left time: 290.8440s
speed: 0.1366s/iter; left time: 277.9560s
speed: 0.1363s/iter; left time: 263.7950s
speed: 0.1364s/iter; left time: 250.2387s
speed: 0.1364s/iter; left time: 236.6038s
speed: 0.1363s/iter; left time: 222.8828s
speed: 0.1363s/iter; left time: 209.2962s
speed: 0.1364s/iter; left time: 195.7429s
speed: 0.1363s/iter; left time: 181.9378s
speed: 0.1364s/iter; left time: 168.4278s
speed: 0.1362s/iter; left time: 154.6098s
speed: 0.1360s/iter; left time: 140.7701s
speed: 0.1364s/iter; left time: 127.5001s
speed: 0.1359s/iter; left time: 113.5145s
speed: 0.1362s/iter; left time: 100.1328s
speed: 0.1363s/iter; left time: 86.5670s
speed: 0.1362s/iter; left time: 72.8662s
speed: 0.1361s/iter; left time: 59.1943s
speed: 0.1363s/iter; left time: 45.6561s
speed: 0.1361s/iter; left time: 31.9842s
speed: 0.1363s/iter; left time: 18.3962s
speed: 0.1364s/iter; left time: 4.7725s
Epoch: 3 cost time: 536.1699142456055
Epoch: 3, Steps: 3934 | Train Loss: -48.7206043 Vali Loss: -48.3033336
EarlyStopping counter: 2 out of 3
Updating learning rate to 2.5e-05
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD
input_c: 122
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 122
pretrained_model: 10
win_size: 100
-------------- End ----------------
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
======================TEST MODE======================
/home/ranlychan/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.007011290364898737
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.4537, Precision : 0.8757, Recall : 0.0468, F-score : 0.0888
/home/ranlychan/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.0031170047065244427
pred: (449900,)
gt: (449900,)
pred: (449900,)
gt: (449900,)
Accuracy : 0.9775, Precision : 0.8841, Recall : 0.9371, F-score : 0.9099
(Anomaly-Transformer) ranlychan@ranlychan-ubuntu:/media/ranlychan/3E6E20236E1FD28F/Dev/Anomaly-Transformer$ bash ./scripts/NSLKDD.sh
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
======================TRAIN MODE======================
speed: 0.1369s/iter; left time: 1601.7550s
speed: 0.1303s/iter; left time: 1512.0029s
speed: 0.1306s/iter; left time: 1502.6880s
speed: 0.1307s/iter; left time: 1490.6938s
speed: 0.1308s/iter; left time: 1478.8884s
speed: 0.1308s/iter; left time: 1465.4615s
speed: 0.1308s/iter; left time: 1452.1905s
speed: 0.1309s/iter; left time: 1440.6744s
speed: 0.1313s/iter; left time: 1431.1096s
speed: 0.1313s/iter; left time: 1418.0322s
speed: 0.1312s/iter; left time: 1404.4908s
speed: 0.1313s/iter; left time: 1392.5284s
speed: 0.1313s/iter; left time: 1378.5787s
speed: 0.1313s/iter; left time: 1365.6873s
speed: 0.1312s/iter; left time: 1351.8481s
speed: 0.1313s/iter; left time: 1339.4321s
speed: 0.1312s/iter; left time: 1325.7825s
speed: 0.1312s/iter; left time: 1312.7482s
speed: 0.1312s/iter; left time: 1299.0108s
speed: 0.1313s/iter; left time: 1286.7188s
speed: 0.1312s/iter; left time: 1273.0868s
speed: 0.1312s/iter; left time: 1260.0926s
speed: 0.1316s/iter; left time: 1250.9483s
speed: 0.1335s/iter; left time: 1254.8993s
speed: 0.1328s/iter; left time: 1235.7682s
speed: 0.1308s/iter; left time: 1204.1539s
speed: 0.1309s/iter; left time: 1191.3958s
speed: 0.1309s/iter; left time: 1178.2278s
speed: 0.1322s/iter; left time: 1176.9927s
speed: 0.1315s/iter; left time: 1157.5977s
speed: 0.1315s/iter; left time: 1144.1452s
speed: 0.1314s/iter; left time: 1130.5234s
speed: 0.1314s/iter; left time: 1117.5005s
speed: 0.1314s/iter; left time: 1104.2098s
speed: 0.1314s/iter; left time: 1090.8631s
speed: 0.1315s/iter; left time: 1078.5724s
speed: 0.1314s/iter; left time: 1064.4714s
speed: 0.1315s/iter; left time: 1052.1539s
speed: 0.1353s/iter; left time: 1069.2737s
Epoch: 1 cost time: 517.9919922351837
Epoch: 1, Steps: 3934 | Train Loss: -47.0414631 Vali Loss: -47.4802924
Validation loss decreased (inf --> -47.480292). Saving model ...
Updating learning rate to 0.0001
speed: 0.4840s/iter; left time: 3759.9627s
speed: 0.1332s/iter; left time: 1021.6347s
speed: 0.1323s/iter; left time: 1001.5881s
speed: 0.1319s/iter; left time: 985.3198s
speed: 0.1345s/iter; left time: 990.9520s
speed: 0.1343s/iter; left time: 976.3390s
speed: 0.1390s/iter; left time: 996.3020s
speed: 0.1346s/iter; left time: 951.4199s
speed: 0.1360s/iter; left time: 947.8869s
speed: 0.1341s/iter; left time: 921.2710s
speed: 0.1379s/iter; left time: 933.7204s
speed: 0.1326s/iter; left time: 883.9982s
speed: 0.1394s/iter; left time: 915.8344s
speed: 0.1355s/iter; left time: 876.6080s
speed: 0.1428s/iter; left time: 909.5229s
speed: 0.1436s/iter; left time: 900.0828s
speed: 0.1437s/iter; left time: 886.3455s
speed: 0.1433s/iter; left time: 869.4626s
speed: 0.1445s/iter; left time: 862.6468s
speed: 0.1449s/iter; left time: 850.2270s
speed: 0.1418s/iter; left time: 818.0399s
speed: 0.1367s/iter; left time: 774.7034s
speed: 0.1367s/iter; left time: 761.4599s
speed: 0.1367s/iter; left time: 747.4475s
speed: 0.1364s/iter; left time: 732.2058s
speed: 0.1368s/iter; left time: 721.0366s
speed: 0.1367s/iter; left time: 706.8142s
speed: 0.1367s/iter; left time: 693.1174s
speed: 0.1367s/iter; left time: 679.1568s
speed: 0.1367s/iter; left time: 665.7158s
speed: 0.1368s/iter; left time: 652.5808s
speed: 0.1367s/iter; left time: 638.4532s
speed: 0.1362s/iter; left time: 622.4852s
speed: 0.1364s/iter; left time: 609.4713s
speed: 0.1364s/iter; left time: 595.9573s
speed: 0.1364s/iter; left time: 582.4890s
speed: 0.1364s/iter; left time: 568.5825s
speed: 0.1364s/iter; left time: 554.9945s
speed: 0.1365s/iter; left time: 541.9608s
Epoch: 2 cost time: 539.6562712192535
Epoch: 2, Steps: 3934 | Train Loss: -48.5144279 Vali Loss: -48.1329151
EarlyStopping counter: 1 out of 3
Updating learning rate to 5e-05
speed: 0.4813s/iter; left time: 1845.6853s
speed: 0.1364s/iter; left time: 509.2899s
speed: 0.1362s/iter; left time: 495.1138s
speed: 0.1364s/iter; left time: 482.0215s
speed: 0.1365s/iter; left time: 468.8174s
speed: 0.1364s/iter; left time: 455.0160s
speed: 0.1364s/iter; left time: 441.3130s
speed: 0.1364s/iter; left time: 427.6231s
speed: 0.1364s/iter; left time: 414.0394s
speed: 0.1364s/iter; left time: 400.4002s
speed: 0.1363s/iter; left time: 386.2983s
speed: 0.1363s/iter; left time: 372.6786s
speed: 0.1364s/iter; left time: 359.5014s
speed: 0.1364s/iter; left time: 345.8320s
speed: 0.1364s/iter; left time: 332.1094s
speed: 0.1363s/iter; left time: 318.1958s
speed: 0.1364s/iter; left time: 304.7477s
speed: 0.1362s/iter; left time: 290.8440s
speed: 0.1366s/iter; left time: 277.9560s
speed: 0.1363s/iter; left time: 263.7950s
speed: 0.1364s/iter; left time: 250.2387s
speed: 0.1364s/iter; left time: 236.6038s
speed: 0.1363s/iter; left time: 222.8828s
speed: 0.1363s/iter; left time: 209.2962s
speed: 0.1364s/iter; left time: 195.7429s
speed: 0.1363s/iter; left time: 181.9378s
speed: 0.1364s/iter; left time: 168.4278s
speed: 0.1362s/iter; left time: 154.6098s
speed: 0.1360s/iter; left time: 140.7701s
speed: 0.1364s/iter; left time: 127.5001s
speed: 0.1359s/iter; left time: 113.5145s
speed: 0.1362s/iter; left time: 100.1328s
speed: 0.1363s/iter; left time: 86.5670s
speed: 0.1362s/iter; left time: 72.8662s
speed: 0.1361s/iter; left time: 59.1943s
speed: 0.1363s/iter; left time: 45.6561s
speed: 0.1361s/iter; left time: 31.9842s
speed: 0.1363s/iter; left time: 18.3962s
speed: 0.1364s/iter; left time: 4.7725s
Epoch: 3 cost time: 536.1699142456055
Epoch: 3, Steps: 3934 | Train Loss: -48.7206043 Vali Loss: -48.3033336
EarlyStopping counter: 2 out of 3
Updating learning rate to 2.5e-05
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD
input_c: 122
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 122
pretrained_model: 10
win_size: 100
-------------- End ----------------
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
======================TEST MODE======================
/home/ranlychan/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.007011290364898737
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.4537, Precision : 0.8757, Recall : 0.0468, F-score : 0.0888
r=50.0%
代码语言:javascript复制------------ Options -------------
anormly_ratio: 50.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 10
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
======================TRAIN MODE======================
speed: 0.1355s/iter; left time: 5316.9313s
speed: 0.1356s/iter; left time: 5307.0847s
speed: 0.1361s/iter; left time: 5313.6697s
speed: 0.1319s/iter; left time: 5136.0505s
speed: 0.1325s/iter; left time: 5148.3551s
speed: 0.1319s/iter; left time: 5109.8676s
speed: 0.1323s/iter; left time: 5113.9623s
speed: 0.1322s/iter; left time: 5096.4198s
speed: 0.1315s/iter; left time: 5054.2963s
speed: 0.1322s/iter; left time: 5068.8596s
speed: 0.1324s/iter; left time: 5062.5358s
speed: 0.1340s/iter; left time: 5111.2675s
speed: 0.1310s/iter; left time: 4983.8302s
speed: 0.1316s/iter; left time: 4993.7247s
speed: 0.1310s/iter; left time: 4958.1371s
speed: 0.1310s/iter; left time: 4944.1936s
speed: 0.1310s/iter; left time: 4931.2664s
speed: 0.1311s/iter; left time: 4920.0523s
speed: 0.1310s/iter; left time: 4905.3923s
speed: 0.1311s/iter; left time: 4894.8455s
speed: 0.1310s/iter; left time: 4879.8760s
speed: 0.1311s/iter; left time: 4869.0741s
speed: 0.1310s/iter; left time: 4851.3908s
speed: 0.1311s/iter; left time: 4841.5871s
speed: 0.1311s/iter; left time: 4828.5362s
speed: 0.1311s/iter; left time: 4816.3585s
speed: 0.1310s/iter; left time: 4800.7019s
speed: 0.1309s/iter; left time: 4784.6071s
speed: 0.1310s/iter; left time: 4773.5566s
speed: 0.1310s/iter; left time: 4761.9220s
speed: 0.1310s/iter; left time: 4748.1666s
speed: 0.1310s/iter; left time: 4734.0354s
speed: 0.1310s/iter; left time: 4720.0640s
speed: 0.1310s/iter; left time: 4708.9502s
speed: 0.1310s/iter; left time: 4694.6541s
speed: 0.1311s/iter; left time: 4685.8344s
speed: 0.1309s/iter; left time: 4665.9214s
speed: 0.1309s/iter; left time: 4654.0228s
speed: 0.1310s/iter; left time: 4642.1672s
Epoch: 1 cost time: 518.1424803733826
Epoch: 1, Steps: 3934 | Train Loss: -46.8131543 Vali Loss: -47.3336469
Validation loss decreased (inf --> -47.333647). Saving model ...
Updating learning rate to 0.0001
speed: 0.4610s/iter; left time: 16276.7726s
speed: 0.1310s/iter; left time: 4612.5694s
speed: 0.1310s/iter; left time: 4599.6580s
speed: 0.1310s/iter; left time: 4587.0812s
speed: 0.1310s/iter; left time: 4572.4280s
speed: 0.1312s/iter; left time: 4565.2154s
speed: 0.1310s/iter; left time: 4546.2637s
speed: 0.1310s/iter; left time: 4534.1559s
speed: 0.1310s/iter; left time: 4519.9412s
speed: 0.1310s/iter; left time: 4506.3366s
speed: 0.1310s/iter; left time: 4493.2462s
speed: 0.1309s/iter; left time: 4479.1329s
speed: 0.1309s/iter; left time: 4465.1925s
speed: 0.1309s/iter; left time: 4451.1384s
speed: 0.1309s/iter; left time: 4439.9778s
speed: 0.1309s/iter; left time: 4425.5404s
speed: 0.1309s/iter; left time: 4412.6608s
speed: 0.1309s/iter; left time: 4399.0118s
speed: 0.1309s/iter; left time: 4386.5066s
speed: 0.1310s/iter; left time: 4374.8416s
speed: 0.1309s/iter; left time: 4360.6469s
speed: 0.1310s/iter; left time: 4348.4842s
speed: 0.1309s/iter; left time: 4333.9263s
speed: 0.1309s/iter; left time: 4321.6431s
speed: 0.1310s/iter; left time: 4309.9051s
speed: 0.1309s/iter; left time: 4295.7049s
speed: 0.1309s/iter; left time: 4282.2557s
speed: 0.1309s/iter; left time: 4268.6591s
speed: 0.1309s/iter; left time: 4256.5062s
speed: 0.1309s/iter; left time: 4241.6757s
speed: 0.1309s/iter; left time: 4228.4744s
speed: 0.1309s/iter; left time: 4215.9839s
speed: 0.1309s/iter; left time: 4203.7866s
speed: 0.1310s/iter; left time: 4192.8665s
speed: 0.1310s/iter; left time: 4179.2397s
speed: 0.1310s/iter; left time: 4165.1929s
speed: 0.1309s/iter; left time: 4151.0590s
speed: 0.1310s/iter; left time: 4140.1505s
speed: 0.1310s/iter; left time: 4126.8890s
Epoch: 2 cost time: 515.0924828052521
Epoch: 2, Steps: 3934 | Train Loss: -48.4168298 Vali Loss: -47.9248486
EarlyStopping counter: 1 out of 3
Updating learning rate to 5e-05
speed: 0.4590s/iter; left time: 14398.8618s
speed: 0.1309s/iter; left time: 4094.5120s
speed: 0.1309s/iter; left time: 4079.1813s
speed: 0.1309s/iter; left time: 4067.8194s
speed: 0.1309s/iter; left time: 4054.6873s
speed: 0.1309s/iter; left time: 4040.4983s
speed: 0.1309s/iter; left time: 4027.7394s
speed: 0.1309s/iter; left time: 4015.9503s
speed: 0.1309s/iter; left time: 4002.8357s
speed: 0.1319s/iter; left time: 4020.1789s
speed: 0.1328s/iter; left time: 4032.3251s
speed: 0.1311s/iter; left time: 3969.1873s
speed: 0.1311s/iter; left time: 3956.2238s
speed: 0.1311s/iter; left time: 3943.2807s
speed: 0.1314s/iter; left time: 3937.5022s
speed: 0.1317s/iter; left time: 3935.3920s
speed: 0.1325s/iter; left time: 3944.7383s
speed: 0.1329s/iter; left time: 3942.8348s
speed: 0.1313s/iter; left time: 3883.1325s
speed: 0.1340s/iter; left time: 3950.0506s
speed: 0.1334s/iter; left time: 3919.4091s
speed: 0.1309s/iter; left time: 3832.1620s
speed: 0.1309s/iter; left time: 3818.9089s
speed: 0.1309s/iter; left time: 3806.7406s
speed: 0.1309s/iter; left time: 3791.2263s
speed: 0.1309s/iter; left time: 3779.5752s
speed: 0.1309s/iter; left time: 3765.7227s
speed: 0.1309s/iter; left time: 3753.4292s
speed: 0.1309s/iter; left time: 3739.4836s
speed: 0.1309s/iter; left time: 3726.6624s
speed: 0.1309s/iter; left time: 3714.4806s
speed: 0.1310s/iter; left time: 3703.1740s
speed: 0.1309s/iter; left time: 3688.7920s
speed: 0.1309s/iter; left time: 3673.9377s
speed: 0.1311s/iter; left time: 3667.6697s
speed: 0.1309s/iter; left time: 3649.3432s
speed: 0.1310s/iter; left time: 3637.1319s
speed: 0.1309s/iter; left time: 3622.2054s
speed: 0.1309s/iter; left time: 3608.6637s
Epoch: 3 cost time: 516.3497984409332
Epoch: 3, Steps: 3934 | Train Loss: -48.6391877 Vali Loss: -48.1122985
EarlyStopping counter: 2 out of 3
Updating learning rate to 2.5e-05
speed: 0.4590s/iter; left time: 12595.1135s
speed: 0.1309s/iter; left time: 3578.3130s
speed: 0.1309s/iter; left time: 3566.5477s
speed: 0.1309s/iter; left time: 3552.5281s
speed: 0.1310s/iter; left time: 3541.1830s
speed: 0.1309s/iter; left time: 3526.7139s
speed: 0.1309s/iter; left time: 3514.5533s
speed: 0.1309s/iter; left time: 3501.3495s
speed: 0.1310s/iter; left time: 3490.4514s
speed: 0.1309s/iter; left time: 3474.1579s
speed: 0.1309s/iter; left time: 3461.5496s
speed: 0.1309s/iter; left time: 3448.6966s
speed: 0.1309s/iter; left time: 3434.1434s
speed: 0.1309s/iter; left time: 3422.2355s
speed: 0.1309s/iter; left time: 3407.6903s
speed: 0.1310s/iter; left time: 3396.7607s
speed: 0.1309s/iter; left time: 3381.6889s
speed: 0.1309s/iter; left time: 3369.2955s
speed: 0.1309s/iter; left time: 3355.4160s
speed: 0.1309s/iter; left time: 3343.8095s
speed: 0.1309s/iter; left time: 3329.5964s
speed: 0.1309s/iter; left time: 3316.2136s
speed: 0.1309s/iter; left time: 3303.9051s
speed: 0.1309s/iter; left time: 3290.4389s
speed: 0.1309s/iter; left time: 3277.7411s
speed: 0.1309s/iter; left time: 3264.3852s
speed: 0.1310s/iter; left time: 3254.0794s
speed: 0.1310s/iter; left time: 3241.5225s
speed: 0.1310s/iter; left time: 3226.8819s
speed: 0.1310s/iter; left time: 3213.5240s
speed: 0.1310s/iter; left time: 3201.2858s
speed: 0.1309s/iter; left time: 3185.9262s
speed: 0.1309s/iter; left time: 3172.8487s
speed: 0.1309s/iter; left time: 3160.0894s
speed: 0.1310s/iter; left time: 3148.5221s
speed: 0.1309s/iter; left time: 3133.3825s
speed: 0.1309s/iter; left time: 3121.3162s
speed: 0.1309s/iter; left time: 3106.9576s
speed: 0.1309s/iter; left time: 3095.5211s
Epoch: 4 cost time: 514.96653175354
Epoch: 4, Steps: 3934 | Train Loss: -48.7457672 Vali Loss: -48.3127411
EarlyStopping counter: 3 out of 3
Early stopping
------------ Options -------------
anormly_ratio: 50.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD
input_c: 122
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 122
pretrained_model: 20
win_size: 100
-------------- End ----------------
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
======================TEST MODE======================
/home/ranlychan/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.0
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.5032, Precision : 0.7028, Recall : 0.2204, F-score : 0.3356
r=60.0%
代码语言:javascript复制Threshold : 0.0
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.5284, Precision : 0.6548, Recall : 0.3625, F-score : 0.4666
代码语言:javascript复制------------ Options -------------
anormly_ratio: 60.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 10
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
======================TRAIN MODE======================
speed: 0.1388s/iter; left time: 5446.8367s
speed: 0.1314s/iter; left time: 5141.6661s
speed: 0.1315s/iter; left time: 5133.9673s
speed: 0.1315s/iter; left time: 5121.2421s
speed: 0.1365s/iter; left time: 5300.2137s
speed: 0.1374s/iter; left time: 5322.4496s
speed: 0.1333s/iter; left time: 5149.1546s
speed: 0.1323s/iter; left time: 5099.9489s
speed: 0.1311s/iter; left time: 5038.8110s
speed: 0.1310s/iter; left time: 5023.0063s
speed: 0.1445s/iter; left time: 5524.1188s
speed: 0.1505s/iter; left time: 5740.0504s
speed: 0.1497s/iter; left time: 5694.0534s
speed: 0.1498s/iter; left time: 5684.9724s
speed: 0.1495s/iter; left time: 5657.5665s
speed: 0.1501s/iter; left time: 5666.0902s
speed: 0.1508s/iter; left time: 5676.4843s
speed: 0.1447s/iter; left time: 5432.0509s
speed: 0.1438s/iter; left time: 5383.0355s
speed: 0.1459s/iter; left time: 5446.3010s
speed: 0.1380s/iter; left time: 5138.5641s
speed: 0.1528s/iter; left time: 5676.7783s
speed: 0.1533s/iter; left time: 5678.8169s
speed: 0.1487s/iter; left time: 5494.3238s
speed: 0.1487s/iter; left time: 5478.8813s
speed: 0.1354s/iter; left time: 4973.0808s
speed: 0.1330s/iter; left time: 4874.2198s
speed: 0.1327s/iter; left time: 4849.0647s
speed: 0.1334s/iter; left time: 4863.0441s
speed: 0.1332s/iter; left time: 4840.3917s
speed: 0.1392s/iter; left time: 5045.4379s
speed: 0.1484s/iter; left time: 5363.5204s
speed: 0.1490s/iter; left time: 5370.1684s
speed: 0.1318s/iter; left time: 4736.2374s
speed: 0.1317s/iter; left time: 4719.7045s
speed: 0.1317s/iter; left time: 4705.7837s
speed: 0.1317s/iter; left time: 4693.7737s
speed: 0.1380s/iter; left time: 4903.0555s
speed: 0.1551s/iter; left time: 5496.2793s
Epoch: 1 cost time: 553.4214758872986
Epoch: 1, Steps: 3934 | Train Loss: -47.2930476 Vali Loss: -47.4361793
Validation loss decreased (inf --> -47.436179). Saving model ...
Updating learning rate to 0.0001
speed: 0.5466s/iter; left time: 19300.5711s
speed: 0.1308s/iter; left time: 4605.8315s
speed: 0.1311s/iter; left time: 4601.2093s
speed: 0.1311s/iter; left time: 4589.1366s
speed: 0.1417s/iter; left time: 4945.4468s
speed: 0.1421s/iter; left time: 4945.5076s
speed: 0.1327s/iter; left time: 4604.5278s
speed: 0.1344s/iter; left time: 4650.3773s
speed: 0.1396s/iter; left time: 4815.6763s
speed: 0.1351s/iter; left time: 4649.1411s
speed: 0.1332s/iter; left time: 4568.2611s
speed: 0.1401s/iter; left time: 4793.6377s
speed: 0.1325s/iter; left time: 4520.7700s
speed: 0.1468s/iter; left time: 4991.2005s
speed: 0.1412s/iter; left time: 4786.1676s
speed: 0.1330s/iter; left time: 4496.7579s
speed: 0.1337s/iter; left time: 4508.0182s
speed: 0.1333s/iter; left time: 4479.6438s
speed: 0.1326s/iter; left time: 4442.6618s
speed: 0.1321s/iter; left time: 4413.8824s
speed: 0.1310s/iter; left time: 4364.2314s
speed: 0.1426s/iter; left time: 4734.3299s
speed: 0.1338s/iter; left time: 4430.3676s
speed: 0.1325s/iter; left time: 4372.0640s
speed: 0.1327s/iter; left time: 4367.8091s
speed: 0.1325s/iter; left time: 4345.4439s
speed: 0.1327s/iter; left time: 4341.0565s
speed: 0.1326s/iter; left time: 4324.5873s
speed: 0.1356s/iter; left time: 4406.5620s
speed: 0.1464s/iter; left time: 4743.1841s
speed: 0.1395s/iter; left time: 4506.8946s
speed: 0.1423s/iter; left time: 4583.7955s
speed: 0.1461s/iter; left time: 4691.0209s
speed: 0.1415s/iter; left time: 4530.2409s
speed: 0.1423s/iter; left time: 4538.9798s
speed: 0.1390s/iter; left time: 4421.9290s
speed: 0.1395s/iter; left time: 4421.7746s
speed: 0.1370s/iter; left time: 4330.0266s
speed: 0.1368s/iter; left time: 4311.1386s
Epoch: 2 cost time: 539.1221182346344
Epoch: 2, Steps: 3934 | Train Loss: -48.4677824 Vali Loss: -47.9757537
EarlyStopping counter: 1 out of 3
Updating learning rate to 5e-05
speed: 0.4911s/iter; left time: 15407.6395s
speed: 0.1325s/iter; left time: 4144.1985s
speed: 0.1348s/iter; left time: 4202.4603s
speed: 0.1361s/iter; left time: 4230.0066s
speed: 0.1315s/iter; left time: 4074.3328s
speed: 0.1355s/iter; left time: 4182.4872s
speed: 0.1483s/iter; left time: 4562.3436s
speed: 0.1509s/iter; left time: 4627.7957s
speed: 0.1495s/iter; left time: 4572.1388s
speed: 0.1501s/iter; left time: 4574.2171s
speed: 0.1498s/iter; left time: 4548.7989s
speed: 0.1459s/iter; left time: 4416.7031s
speed: 0.1436s/iter; left time: 4332.7850s
speed: 0.1434s/iter; left time: 4311.9022s
speed: 0.1465s/iter; left time: 4390.5848s
speed: 0.1476s/iter; left time: 4409.8262s
speed: 0.1477s/iter; left time: 4398.3314s
speed: 0.1445s/iter; left time: 4286.7148s
speed: 0.1463s/iter; left time: 4327.3261s
speed: 0.1437s/iter; left time: 4235.5724s
speed: 0.1437s/iter; left time: 4219.7474s
speed: 0.1462s/iter; left time: 4280.5025s
speed: 0.1448s/iter; left time: 4223.6321s
speed: 0.1444s/iter; left time: 4198.9182s
speed: 0.1446s/iter; left time: 4190.8026s
speed: 0.1442s/iter; left time: 4164.7457s
speed: 0.1446s/iter; left time: 4159.9640s
speed: 0.1440s/iter; left time: 4129.8085s
speed: 0.1447s/iter; left time: 4133.1227s
speed: 0.1444s/iter; left time: 4111.4583s
speed: 0.1449s/iter; left time: 4110.1645s
speed: 0.1440s/iter; left time: 4072.0241s
speed: 0.1438s/iter; left time: 4050.8166s
speed: 0.1444s/iter; left time: 4055.0368s
speed: 0.1441s/iter; left time: 4031.9231s
speed: 0.1442s/iter; left time: 4020.3876s
speed: 0.1445s/iter; left time: 4012.2267s
speed: 0.1448s/iter; left time: 4007.0133s
speed: 0.1445s/iter; left time: 3985.0134s
Epoch: 3 cost time: 565.8869743347168
Epoch: 3, Steps: 3934 | Train Loss: -48.6567995 Vali Loss: -48.1764615
EarlyStopping counter: 2 out of 3
Updating learning rate to 2.5e-05
speed: 0.5192s/iter; left time: 14247.0282s
speed: 0.1448s/iter; left time: 3958.9565s
speed: 0.1448s/iter; left time: 3943.9087s
speed: 0.1443s/iter; left time: 3916.2532s
speed: 0.1443s/iter; left time: 3901.8156s
speed: 0.1440s/iter; left time: 3880.5454s
speed: 0.1444s/iter; left time: 3874.2425s
speed: 0.1448s/iter; left time: 3871.7225s
speed: 0.1443s/iter; left time: 3842.9239s
speed: 0.1441s/iter; left time: 3824.7977s
speed: 0.1441s/iter; left time: 3810.2506s
speed: 0.1442s/iter; left time: 3797.6073s
speed: 0.1442s/iter; left time: 3782.7356s
speed: 0.1443s/iter; left time: 3771.7759s
speed: 0.1444s/iter; left time: 3759.7137s
speed: 0.1440s/iter; left time: 3736.1705s
speed: 0.1444s/iter; left time: 3730.0108s
speed: 0.1440s/iter; left time: 3707.2472s
speed: 0.1445s/iter; left time: 3706.0638s
speed: 0.1438s/iter; left time: 3671.9295s
speed: 0.1442s/iter; left time: 3669.4479s
speed: 0.1446s/iter; left time: 3664.2420s
speed: 0.1446s/iter; left time: 3648.3342s
speed: 0.1446s/iter; left time: 3634.8287s
speed: 0.1474s/iter; left time: 3691.6503s
speed: 0.1511s/iter; left time: 3767.4017s
speed: 0.1494s/iter; left time: 3711.8324s
speed: 0.1441s/iter; left time: 3564.2086s
speed: 0.1439s/iter; left time: 3545.6107s
speed: 0.1468s/iter; left time: 3603.3738s
speed: 0.1452s/iter; left time: 3548.3801s
speed: 0.1446s/iter; left time: 3520.4837s
speed: 0.1441s/iter; left time: 3491.6876s
speed: 0.1440s/iter; left time: 3476.8049s
speed: 0.1448s/iter; left time: 3481.9156s
speed: 0.1466s/iter; left time: 3508.7926s
speed: 0.1447s/iter; left time: 3450.3449s
speed: 0.1440s/iter; left time: 3418.7299s
speed: 0.1439s/iter; left time: 3401.0288s
Epoch: 4 cost time: 569.6859128475189
Epoch: 4, Steps: 3934 | Train Loss: -48.7182953 Vali Loss: -48.2986017
EarlyStopping counter: 3 out of 3
Early stopping
------------ Options -------------
anormly_ratio: 60.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD
input_c: 122
k: 3
lr: 0.0001
mode: test
model_save_path: checkpoints
num_epochs: 10
output_c: 122
pretrained_model: 20
win_size: 100
-------------- End ----------------
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
test: (22544, 122)
train: (125973, 122)
======================TEST MODE======================
/home/ranlychan/anaconda3/envs/Anomaly-Transformer/lib/python3.6/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead.
warnings.warn(warning.format(ret))
Threshold : 0.0
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.5284, Precision : 0.6548, Recall : 0.3625, F-score : 0.4666
移除训练集异常点
简单去除训练集异常点数据:
代码语言:javascript复制#train ar=0.5%
#test ar=60%
Threshold : 8.954137840471525e-22
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.4903, Precision : 0.6855, Recall : 0.1930, F-score : 0.3012
#train ar=60%
#test ar=60%
Threshold : 1.6401431994555087e-32
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.4899, Precision : 0.6622, Recall : 0.2119, F-score : 0.3210
对异常点进行KNN插补:
一对多策略 OvR
单独将每个类标为1,其余标为0,每个类的model checkpoint 使用各自的anomaly ratio单独训练。
代码语言:javascript复制------------ Options -------------
anormly_ratio: 20.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_0
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.0
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.7100, Precision : 0.2341, Recall : 0.1776, F-score : 0.2020
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_1
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.002423033353406936
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9736, Precision : 0.0107, Recall : 0.0094, F-score : 0.0100
------------ Options -------------
anormly_ratio: 5.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_2
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 2.4234104793409644e-19
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9197, Precision : 0.0644, Recall : 0.0604, F-score : 0.0623
------------ Options -------------
anormly_ratio: 5.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_3
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 2.2883160614427485e-21
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9076, Precision : 0.0818, Recall : 0.0675, F-score : 0.0740
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_4
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.006830912414006861
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9606, Precision : 0.0408, Recall : 0.0151, F-score : 0.0221
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_5
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.007120268438011376
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9576, Precision : 0.0259, Recall : 0.0082, F-score : 0.0124
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_6
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.002397903576493261
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9557, Precision : 0.0319, Recall : 0.0123, F-score : 0.0178
------------ Options -------------
anormly_ratio: 0.01
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_7
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.6700110692559966
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9985, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_8
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.006463531367480735
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9737, Precision : 0.0124, Recall : 0.0084, F-score : 0.0100
------------ Options -------------
anormly_ratio: 5.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_9
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 9.709074460615489e-17
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9228, Precision : 0.0520, Recall : 0.0487, F-score : 0.0503
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_10
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.0072950472310184325
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9819, Precision : 0.0127, Recall : 0.0169, F-score : 0.0145
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_11
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.006282573062926521
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9598, Precision : 0.0256, Recall : 0.0088, F-score : 0.0131
------------ Options -------------
anormly_ratio: 0.1
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_12
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.0748524039611232
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9941, Precision : 0.0108, Recall : 0.0244, F-score : 0.0149
------------ Options -------------
anormly_ratio: 0.5
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_13
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.028188115973026333
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9874, Precision : 0.0129, Recall : 0.0150, F-score : 0.0139
------------ Options -------------
anormly_ratio: 0.5
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_14
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.012299377284944485
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9887, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.01
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_15
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.7865708318292497
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9984, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_16
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.0023502711369655835
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9731, Precision : 0.0036, Recall : 0.0030, F-score : 0.0033
------------ Options -------------
anormly_ratio: 0.5
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_17
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.02240190408192611
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9866, Precision : 0.0122, Recall : 0.0142, F-score : 0.0131
------------ Options -------------
anormly_ratio: 1.0
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_18
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.007351175076328215
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9767, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.5
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_19
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.023260270589962658
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9855, Precision : 0.0115, Recall : 0.0127, F-score : 0.0121
------------ Options -------------
anormly_ratio: 0.05
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_20
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9965, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.05
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_21
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.10992800116911451
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9961, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.05
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_22
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.13109133851528165
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9963, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.01
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_23
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.8262347285803151
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9996, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.05
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_24
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.09242837175354189
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9966, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.01
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_25
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.36379067861726466
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9995, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.05
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_26
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.1089880059286936
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9964, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.05
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_27
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.04048785941675266
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9976, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.01
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_28
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.6861327379285682
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9990, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.01
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_29
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.7651060473798674
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9992, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.01
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_30
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.6199230782323712
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9992, Precision : 0.0000, Recall : 0.0000, F-score : 0.0000
------------ Options -------------
anormly_ratio: 0.01
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_31
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------
Threshold : 0.5765992528795936
pred: (22500,)
gt: (22500,)
pred: (22500,)
gt: (22500,)
Accuracy : 0.9993, Precision : 0.0714, Recall : 0.2500, F-score : 0.1111
------------ Options -------------
anormly_ratio: 0.01
batch_size: 32
data_path: dataset/NSLKDD
dataset: NSLKDD_32
input_c: 122
k: 3
lr: 0.0001
mode: train
model_save_path: checkpoints
num_epochs: 3
output_c: 122
pretrained_model: None
win_size: 100
-------------- End ----------------