Python中的并发编程(6)使用多进程

2023-12-26 14:45:10 浏览数 (2)

使用多进程

multiprocessing模块提供了使用进程的方法,使用起来和线程threading模块非常类似。 multiprocessing模块包含一个与Thread类非常相似的Process类。可以将Python中的并发编程(2)线程的实现的Thread直接替换成Process

代码语言:javascript复制
import itertools
import time
# 从multiprocessing导入
from multiprocessing import Process, Event
from multiprocessing import synchronize 

# 旋转
def spin(msg: str, done: synchronize.Event ) -> None: 
    for char in itertools.cycle(r'|/-'): 
        status = f'r{char} {msg}' 
        print(status, end='', flush=True)
        if done.wait(.1): 
            break
    blanks = ' ' * len(status)
    print(f'r{blanks}r', end='')

# 阻塞3秒,并返回42
def slow() -> int:
    time.sleep(3) 
    return 42

def supervisor() -> int: 
    done = Event() 
    # Thread 替换成Process
    spinner = Process(target=spin, args=('thinking!', done)) 
    print(f'spinner object: {spinner}') 
    spinner.start() 
    result = slow() 
    done.set() 
    spinner.join() 
    return result
    
def main() -> None:
    result = supervisor() 
    print(f'Answer: {result}')
    
if __name__ == '__main__':
    main()

同样,我们用进程改写线程Python中的并发编程(2)线程的实现的计算。

代码语言:javascript复制
import time
from multiprocessing import Process
# 计算number的因子
def factorize(number):
    for i in range(1, number   1):
        if number % i == 0:
            yield i
numbers = [2139079, 1214759, 1516637, 1852285, 14256346, 12456533]
def get_factor(number):
    factors = list(factorize(number))
    return factors

if __name__ == '__main__':
    start = time.time()
    processes = []
    for number in numbers:
        process = Process(target=get_factor, args=(number,))
        process.start() # 启动
        processes.append(process)
        
    
    for process in processes:
        process.join() # 等待完成

    end = time.time()
    delta = end - start
    print(f'Process {delta:.3f} 秒')

我们发现修改为进程后,计算耗费时间减少了一些:

代码语言:javascript复制
(之前的)顺序执行花费 2.478 秒

Process 1.744 秒

由于进程启动和通信需要耗费一定时间,所以并不明显。如果把numbers中的数字加大,时间减少的会更明显:

代码语言:javascript复制
numbers = [4139079, 2214759, 4516637, 6852285, 44256346, 62456533]
代码语言:javascript复制
顺序执行花费 11.079 秒

Process 6.870 秒

multiprocessing还提供了进程池Pool,可以方便地处理一系列输入:

代码语言:javascript复制
from multiprocessing import Pool

def f(x):
    return x*x

if __name__ == '__main__':
    with Pool(5) as p:
        print(p.map(f, [1, 2, 3]))

0 人点赞