深入浅出Zookeeper源码(二):存储技术

2024-01-09 13:42:40 浏览数 (1)

版本

日期

备注

1.0

2020.3.12

文章首发

1.0.1

2020.3.16

改进部分大小写问题及形容方式

1.0.2

2020.3.21

改进可能会引起错误理解的部分

1.0.3

2020.3.29

修改标题

1.0.4

2020.4.18

改进小结部分

1.0.5

2020.6.26

更新部分部分解释,改进注释风格

1.0.6

2020.7.6

增加部分详细解释

前言

在上篇文章中,我们简单提到了Zookeeper的几个核心点。在这篇文章中,我们就来探索其存储技术。在开始前,读者可以考虑思考下列问题:

  • Zookeeper的数据存储是如何实现的?
  • Zookeeper进行一次写操作的时候,会发生什么å?
  • 当一个Zookeeper新加入现有集群时,如何同步现集群中的数据?

抱着问题,我们进入下面的内容。

Zookeper本地存储模型

众所周知,Zookeeper不擅长大量数据的读写,因为:

  1. 本质上就是一个内存里的字典。
  2. 持久化节点的写入由于WAL会导致刷盘,过大的数据会引起额外的seek
  3. 同样的,在zk启动时,所有的数据会从WAL的日志中读出。如果过大,也会导致启动时间较长。

而内存中的数据,也被称为ZkDatabase(Zk的内存数据库),由它来负责管理Zk的会话DataTree存储和事务日志,它也会定时向磁盘dump快照数据,在Zk启动时,也会通过事务日志和快照数据来恢复内存中的数据。

既然Zk的数据是在内存里的,那么它是如何解决数据持久化问题的呢?上一段我们已经提到了:即通过事务日志——WAL,在每次写请求前,都会根据目前的zxid来写log,将请求先记录到日志中。

接下来,我们来谈谈WAL的优化措施。

WAL的优化

WAL优化方案1:Group Commit

一般的WAL中每次写完END都要调用一次耗时的sync API,这其实是会影响到系统的性能。为了解决这个问题,我们可以一次提交多个数据写入——只在最后一个数据写入的END日志之后,才调用sync API。like this:

  • without group commit: BEGIN Data1 END Sync BEGIN Data2 END Sync BEGIN Data3 END Sync
  • with group commit: BEGIN Data1 END BEGIN Data2 END BEGIN Data3 END Sync

凡事都有代价,这可能会引起数据一致性相关的问题。

WAL优化方案2:File Padding

在往 WAL 里面追加日志的时候,如果当前的文件 block 不能保存新添加的日志,就要为文件分配新的 block,这要更新文件 inode 里面的信息(例如 size)。如果我们使用的是 HHD 的话,就要先 seek 到 inode 所在的位置,然后回到新添加 block 的位置进行日志追加,这些都是发生在写事务日志时,这会明显拖慢系统的性能。

为了减少这些 seek,我们可以预先为 WAL 分配 block。例如 ZooKeeper 当检测到当前事务日志文件不足4KB时,就会填充0使该文件到64MB(这里0仅仅作为填充位)。并新建一个64MB的文件。

所以这也是Zookeeper不擅长读写大数据的原因之一,这会引起大量的block分配。

WAL优化方案3:Snapshot

如果我们使用一个内存数据结构加 WAL 的存储方案,WAL 就会一直增长。这样在存储系统启动的时候,就要读取大量的 WAL 日志数据来重建内存数据。快照可以解决这个问题。

除了解决启动时间过长的问题之外,快照还可以减少存储空间的使用。WAL 的多个日志条目有可能是对同一个数据的改动,通过快照,就可以只保留最新的数据改动(Merge)。

Zk的确采用了这个方案来做优化。还带来的一个好处是:在一个节点加入时,可以用最新的Snapshot传过去便于同步数据。

源码解析

本节内容都以3.5.7版本为例

核心接口和类

  • TxnLog:接口类型,提供读写事务日志的API。
  • FileTxnLog:基于文件的TxnLog实现。
  • Snapshot:快照接口类型,提供序列化、反序列化、访问快照API。
  • FileSnapshot:基于文件的Snapshot实现。
  • FileTxnSnapLog:TxnLog和Snapshot的封装
  • DataTree:Zookeeper的内存数据结构,ZNode构成的树。
  • DataNode:表示一个ZNode。

TxnLog

TxnLog是我们前面提到的事务日志。那么接下来我们就来看它的相关源码。

先看注释:

代码语言:javascript复制
package org.apache.zookeeper.server.persistence;

import ...

/**
 * This class implements the TxnLog interface. It provides api's
 * to access the txnlogs and add entries to it.
 * <p>
 * The format of a Transactional log is as follows:
 * <blockquote><pre>
 * LogFile:
 *     FileHeader TxnList ZeroPad
 *
 * FileHeader: {
 *     magic 4bytes (ZKLG)
 *     version 4bytes
 *     dbid 8bytes
 *   }
 *
 * TxnList:
 *     Txn || Txn TxnList
 *
 * Txn:
 *     checksum Txnlen TxnHeader Record 0x42
 *
 * checksum: 8bytes Adler32 is currently used
 *   calculated across payload -- Txnlen, TxnHeader, Record and 0x42
 *
 * Txnlen:
 *     len 4bytes
 *
 * TxnHeader: {
 *     sessionid 8bytes
 *     cxid 4bytes
 *     zxid 8bytes
 *     time 8bytes
 *     type 4bytes
 *   }
 *
 * Record:
 *     See Jute definition file for details on the various record types
 *
 * ZeroPad:
 *     0 padded to EOF (filled during preallocation stage)
 * </pre></blockquote>
 */
public class FileTxnLog implements TxnLog, Closeable {

在注释中,我们可以看到一个FileLog由三部分组成:

  • FileHeader
  • TxnList
  • ZerdPad

关于FileHeader,可以理解其为一个标示符。TxnList则为主要内容。ZeroPad是一个终结符。

TxnLog.append

我们来看看最典型的append方法,可以将其理解WAL过程中的核心方法:

代码语言:javascript复制
    /**
     * append an entry to the transaction log
     * @param hdr the header of the transaction
     * @param txn the transaction part of the entry
     * returns true iff something appended, otw false
     */
    public synchronized boolean append(TxnHeader hdr, Record txn)
        throws IOException
    {
        if (hdr == null) { //为null意味着这是一个读请求,直接返回
            return false;
        }
        if (hdr.getZxid() <= lastZxidSeen) {
            LOG.warn("Current zxid "   hdr.getZxid()
                      " is <= "   lastZxidSeen   " for "
                      hdr.getType());
        } else {
            lastZxidSeen = hdr.getZxid();
        }
        if (logStream==null) { //为空的话则new一个Stream
           if(LOG.isInfoEnabled()){
                LOG.info("Creating new log file: "   Util.makeLogName(hdr.getZxid()));
           }

           logFileWrite = new File(logDir, Util.makeLogName(hdr.getZxid()));
           fos = new FileOutputStream(logFileWrite);
           logStream=new BufferedOutputStream(fos);
           oa = BinaryOutputArchive.getArchive(logStream);
           FileHeader fhdr = new FileHeader(TXNLOG_MAGIC,VERSION, dbId);
           fhdr.serialize(oa, "fileheader");   //写file header
           // Make sure that the magic number is written before padding.
           logStream.flush();      // zxid必须比日志先落盘
           filePadding.setCurrentSize(fos.getChannel().position());
           streamsToFlush.add(fos); //加入需要Flush的队列
        }
        filePadding.padFile(fos.getChannel());   //确定是否要扩容。每次64m扩容
        byte[] buf = Util.marshallTxnEntry(hdr, txn);  //序列化写入
        if (buf == null || buf.length == 0) {
            throw new IOException("Faulty serialization for header "  
                    "and txn");
        }
        Checksum crc = makeChecksumAlgorithm();   //生成butyArray的checkSum
        crc.update(buf, 0, buf.length);
        oa.writeLong(crc.getValue(), "txnEntryCRC");//写入日志里
        Util.writeTxnBytes(oa, buf);
        return true;
    }

这里有个zxid(ZooKeeper Transaction Id),有点像MySQL的GTID。每次对Zookeeper的状态的改变都会产生一个zxid,zxid是全局有序的,如果zxid1小于zxid2,则zxid1在zxid2之前发生。

简单分析一下写入过程:

  1. 确定要写的事务日志:当Zk启动完成或日志写满时,会与日志文件断开连接。这个时候会根据zxid创建一个日志。
  2. 是否需要预分配:如果检测到当前日志剩余空间不足4KB时
  3. 事务序列化
  4. 为每个事务生成一个Checksum,目的是为了校验数据的完整性和一致性。
  5. 写入文件,不过是写在Buffer里,并未落盘。
  6. 落盘。根据用户配置来决定是否强制落盘。
TxnLog.commit

这个方法被调用的时机大致有:

  • 服务端比较闲的时候去调用
  • 到请求数量超出1000时,调用。之前提到过GroupCommit,其实就是在这个时候调用的。
  • zk的shutdown钩子被调用时,调用
代码语言:javascript复制
    /**
     * commit the logs. make sure that everything hits the
     * disk
     */
    public synchronized void commit() throws IOException {
        if (logStream != null) {
            logStream.flush();
        }
        for (FileOutputStream log : streamsToFlush) {
            log.flush();
            if (forceSync) {
                long startSyncNS = System.nanoTime();

                FileChannel channel = log.getChannel();
                channel.force(false);//对应fdataSync

                syncElapsedMS = TimeUnit.NANOSECONDS.toMillis(System.nanoTime() - startSyncNS);
                if (syncElapsedMS > fsyncWarningThresholdMS) {
                    if(serverStats != null) {
                        serverStats.incrementFsyncThresholdExceedCount();
                    }
                    LOG.warn("fsync-ing the write ahead log in "
                              Thread.currentThread().getName()
                              " took "   syncElapsedMS
                              "ms which will adversely effect operation latency. "
                              "File size is "   channel.size()   " bytes. "
                              "See the ZooKeeper troubleshooting guide");
                }
            }
        }
        while (streamsToFlush.size() > 1) {
            streamsToFlush.removeFirst().close();
        }
    }

代码非常的简单。如果logStream还有,那就先刷下去。然后遍历待flush的队列(是个链表,用来保持操作顺序),同时还会关注写入的时间,如果过长,则会打一个Warn的日志。

DataTree和DataNode

DataTree是Zk的内存数据结构——就是我们之前说到的MTable。它以树状结构来组织DataNode。

这么听起来可能有点云里雾里,不妨直接看一下DataNode的相关代码。

代码语言:javascript复制
public class DataNode implements Record {
    /** the data for this datanode */
    byte data[];

    /**
     * the acl map long for this datanode. the datatree has the map
     */
    Long acl;

    /**
     * the stat for this node that is persisted to disk.
     */
    public StatPersisted stat;

    /**
     * the list of children for this node. note that the list of children string
     * does not contain the parent path -- just the last part of the path. This
     * should be synchronized on except deserializing (for speed up issues).
     */
    private Set<String> children = null;
.....
}

如果用过ZkClient的小伙伴,可能非常熟悉。这就是我们根据一个path获取数据时返回的相关属性——这就是用来描述存储数据的一个类。注意,DataNode还会维护它的Children。

简单了解DataNode后,我们来看一下DataTree。为了避免干扰,我们选出最关键的成员变量:

代码语言:javascript复制
public class DataTree {
    private static final Logger LOG = LoggerFactory.getLogger(DataTree.class);

    /**
     * This hashtable provides a fast lookup to the datanodes. The tree is the
     * source of truth and is where all the locking occurs
     */
    private final ConcurrentHashMap<String, DataNode> nodes =
        new ConcurrentHashMap<String, DataNode>();

    private final WatchManager dataWatches = new WatchManager();

    private final WatchManager childWatches = new WatchManager();

    /**
     * This hashtable lists the paths of the ephemeral nodes of a session.
     */
    private final Map<Long, HashSet<String>> ephemerals =
        new ConcurrentHashMap<Long, HashSet<String>>();
    .......
}

我们可以看到,DataTree本质上是通过一个ConcurrentHashMap来存储DataNode的(临时节点也是)。保存的是 DataNode 的 path 到 DataNode 的映射。

那为什么要保存两个状态呢?这得看调用它们被调用的场景:

  • 一般CRUD ZNode的请求都是走ConcurrentHashMap的
  • 序列化DataTree的时候会从Root节点开始遍历所有节点

如果需要获取所有节点的信息,显然遍历树会比一个个从ConcurrentHashMap 拿快。

接下来看一下序列化的相关代码:

DataNode的序列化方法
代码语言:javascript复制
    /**
     * this method uses a stringbuilder to create a new path for children. This
     * is faster than string appends ( str1   str2).
     *
     * @param oa
     *            OutputArchive to write to.
     * @param path
     *            a string builder.
     * @throws IOException
     * @throws InterruptedException
     */
    void serializeNode(OutputArchive oa, StringBuilder path) throws IOException {
        String pathString = path.toString();
        DataNode node = getNode(pathString);
        if (node == null) {
            return;
        }
        String children[] = null;
        DataNode nodeCopy;
        synchronized (node) {
            StatPersisted statCopy = new StatPersisted();
            copyStatPersisted(node.stat, statCopy);
            //we do not need to make a copy of node.data because the contents
            //are never changed
            nodeCopy = new DataNode(node.data, node.acl, statCopy);
            Set<String> childs = node.getChildren();
            children = childs.toArray(new String[childs.size()]);
        }
        serializeNodeData(oa, pathString, nodeCopy);
        path.append('/');
        int off = path.length();
        for (String child : children) {
            // since this is single buffer being resused
            // we need
            // to truncate the previous bytes of string.
            path.delete(off, Integer.MAX_VALUE);
            path.append(child);
            serializeNode(oa, path);
        }
    }

可以看到,的确是通过DataNode的Children来遍历所有节点。

DataNode的反序列化方法

接下来看一下反序列化的代码:

代码语言:javascript复制
    public void deserialize(InputArchive ia, String tag) throws IOException {
        aclCache.deserialize(ia);
        nodes.clear();
        pTrie.clear();
        String path = ia.readString("path");
        while (!"/".equals(path)) {
            DataNode node = new DataNode();
            ia.readRecord(node, "node");
            nodes.put(path, node);
            synchronized (node) {
                aclCache.addUsage(node.acl);
            }
            int lastSlash = path.lastIndexOf('/');
            if (lastSlash == -1) {
                root = node;
            } else {
                String parentPath = path.substring(0, lastSlash);
                DataNode parent = nodes.get(parentPath);
                if (parent == null) {
                    throw new IOException("Invalid Datatree, unable to find "  
                            "parent "   parentPath   " of path "   path);
                }
                parent.addChild(path.substring(lastSlash   1));
                long eowner = node.stat.getEphemeralOwner();
                EphemeralType ephemeralType = EphemeralType.get(eowner);
                if (ephemeralType == EphemeralType.CONTAINER) {
                    containers.add(path);
                } else if (ephemeralType == EphemeralType.TTL) {
                    ttls.add(path);
                } else if (eowner != 0) {
                    HashSet<String> list = ephemerals.get(eowner);
                    if (list == null) {
                        list = new HashSet<String>();
                        ephemerals.put(eowner, list);
                    }
                    list.add(path);
                }
            }
            path = ia.readString("path");
        }
        nodes.put("/", root);
        // we are done with deserializing the
        // the datatree
        // update the quotas - create path trie
        // and also update the stat nodes
        setupQuota();

        aclCache.purgeUnused();
    }

因为序列化的时候是前序遍历。所以反序列化时是先反序列化父亲节点,再反序列化孩子节点。

Snapshot

那么DataTree在什么情况下会序列化呢?在这里就要提到快照了。

前面提到过:如果我们使用一个内存数据结构加 WAL 的存储方案,WAL 就会一直增长。这样在存储系统启动的时候,就要读取大量的 WAL 日志数据来重建内存数据。快照可以解决这个问题。

除了减少WAL日志,Snapshot还会在Zk全量同步时被用到——当一个全新的ZkServer(这个一般叫Learner)被加入集群时,Leader服务器会将本机上的数据全量同步给新来的ZkServer。

序列化

接下来看一下代码入口:

代码语言:javascript复制
    /**
     * serialize the datatree and session into the file snapshot
     * @param dt the datatree to be serialized
     * @param sessions the sessions to be serialized
     * @param snapShot the file to store snapshot into
     */
    public synchronized void serialize(DataTree dt, Map<Long, Integer> sessions, File snapShot)
            throws IOException {
        if (!close) {
            try (OutputStream sessOS = new BufferedOutputStream(new FileOutputStream(snapShot));
                 CheckedOutputStream crcOut = new CheckedOutputStream(sessOS, new Adler32())) {
                //CheckedOutputStream cout = new CheckedOutputStream()
                OutputArchive oa = BinaryOutputArchive.getArchive(crcOut);
                FileHeader header = new FileHeader(SNAP_MAGIC, VERSION, dbId);
                serialize(dt, sessions, oa, header);
                long val = crcOut.getChecksum().getValue();
                oa.writeLong(val, "val");
                oa.writeString("/", "path");
                sessOS.flush();
            }
        } else {
            throw new IOException("FileSnap has already been closed");
        }
    }

JavaIO的基础知识在这不再介绍,有兴趣的人可以自行查阅资料或看 从一段代码谈起——浅谈JavaIO接口。

本质就是创建文件,并调用DataTree的序列化方法,DataTree的序列化其实就是遍历DataNode去序列化,最后将这些序列化的内容写入文件。

反序列化
代码语言:javascript复制
    /**
     * deserialize a data tree from the most recent snapshot
     * @return the zxid of the snapshot
     */
    public long deserialize(DataTree dt, Map<Long, Integer> sessions)
            throws IOException {
        // we run through 100 snapshots (not all of them)
        // if we cannot get it running within 100 snapshots
        // we should  give up
        List<File> snapList = findNValidSnapshots(100);
        if (snapList.size() == 0) {
            return -1L;
        }
        File snap = null;
        boolean foundValid = false;
        for (int i = 0, snapListSize = snapList.size(); i < snapListSize; i  ) {
            snap = snapList.get(i);
            LOG.info("Reading snapshot "   snap);
            try (InputStream snapIS = new BufferedInputStream(new FileInputStream(snap));
                 CheckedInputStream crcIn = new CheckedInputStream(snapIS, new Adler32())) {
                InputArchive ia = BinaryInputArchive.getArchive(crcIn);
                deserialize(dt, sessions, ia);
                long checkSum = crcIn.getChecksum().getValue();
                long val = ia.readLong("val");
                if (val != checkSum) {
                    throw new IOException("CRC corruption in snapshot :  "   snap);
                }
                foundValid = true;
                break;
            } catch (IOException e) {
                LOG.warn("problem reading snap file "   snap, e);
            }
        }
        if (!foundValid) {
            throw new IOException("Not able to find valid snapshots in "   snapDir);
        }
        dt.lastProcessedZxid = Util.getZxidFromName(snap.getName(), SNAPSHOT_FILE_PREFIX);
        return dt.lastProcessedZxid;
    }

简单来说,先读取Snapshot文件们。并反序列化它们,组成DataTree。

小结

在本文中,笔者和大家一起学习了Zk的底层存储技术。在此处,我们做个简单的回顾:

  • zk的数据主要维护在内存中。在写入内存前,会做WAL,同时也会定期的做快照持久化到磁盘
  • WAL的常见优化手段有三种:Group Commit、File Padding、Snapshot

另外,Zk中序列化技术用的是Apache Jute——本质上调用了JavaDataOutput和Input,较为简单。故没在本文中展开。

0 人点赞