【Omniverse使用方法】用代码生成场景并合成图像数据集

2024-01-17 17:24:13 浏览数 (1)

本次是用代码生成一个物流仓库,并合成图像数据集

代码语言:javascript复制
import os
import omni
from pxr import Usd, UsdGeom, Gf, UsdShade
from omni.isaac.synthetic_utils import SyntheticDataHelper

设置保存图像数据集的参数

代码语言:javascript复制
output_folder = "dataset/images"  # 图像数据集保存的文件夹路径
image_width = 640  # 图像宽度
image_height = 480  # 图像高度
num_images = 100  # 生成的图像数量

创建物流仓库场景

代码语言:javascript复制
def create_logistics_warehouse_scene():
    stage = omni.usd.get_context().get_stage()
代码语言:javascript复制
# 创建物流仓库模型
warehouse_prim = stage.DefinePrim('/World/Warehouse', 'Xform')
warehouse_model = UsdGeom.Mesh.Define(stage, '/World/Warehouse/WarehouseModel')
# 设置物流仓库模型的位置、旋转等属性

# 添加其他物体、光照等场景元素
# ...

初始化SyntheticDataHelper对象

代码语言:javascript复制
synthetic_helper = SyntheticDataHelper()
synthetic_helper.set_output_image_folder(output_folder)
synthetic_helper.set_output_image_size(image_width, image_height)

创建物流仓库场景

代码语言:javascript复制
create_logistics_warehouse_scene()

循环生成图像数据集

代码语言:javascript复制
for i in range(num_images):
代码语言:javascript复制
# 渲染场景并获取图像
代码语言:javascript复制
image = synthetic_helper.render_image()
代码语言:javascript复制
# 保存图像到指定文件夹
image_path = os.path.join(output_folder, f"image_{i}.png")
image.save(image_path)
# 输出生成进度
print(f"Generated image {i 1}/{num_images}: {image_path}")
代码语言:javascript复制
print("Image dataset generation complete!")

完整代码:

代码语言:javascript复制
```python
import os
import omni
from pxr import Usd, UsdGeom, Gf, UsdShade
from omni.isaac.synthetic_utils import SyntheticDataHelper

# 设置保存图像数据集的参数
output_folder = "dataset/images"  # 图像数据集保存的文件夹路径
image_width = 640  # 图像宽度
image_height = 480  # 图像高度
num_images = 100  # 生成的图像数量

# 创建物流仓库场景
def create_logistics_warehouse_scene():
    stage = omni.usd.get_context().get_stage()

    # 创建物流仓库模型
    warehouse_prim = stage.DefinePrim('/World/Warehouse', 'Xform')
    warehouse_model = UsdGeom.Mesh.Define(stage, '/World/Warehouse/WarehouseModel')
    # 设置物流仓库模型的位置、旋转等属性

    # 添加其他物体、光照等场景元素
    # ...

# 初始化SyntheticDataHelper对象
synthetic_helper = SyntheticDataHelper()
synthetic_helper.set_output_image_folder(output_folder)
synthetic_helper.set_output_image_size(image_width, image_height)

# 创建物流仓库场景
create_logistics_warehouse_scene()

# 循环生成图像数据集
for i in range(num_images):
    # 渲染场景并获取图像
    image = synthetic_helper.render_image()
    
    # 保存图像到指定文件夹
    image_path = os.path.join(output_folder, f"image_{i}.png")
    image.save(image_path)
    
    # 输出生成进度
    print(f"Generated image {i 1}/{num_images}: {image_path}")

print("Image dataset generation complete!")

0 人点赞